Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 3 |
| Since 2017 (last 10 years) | 5 |
| Since 2007 (last 20 years) | 5 |
Descriptor
| Algebra | 5 |
| Learning Analytics | 5 |
| Mathematics Tests | 5 |
| Prediction | 5 |
| Comparative Analysis | 4 |
| Learning Processes | 4 |
| Mathematics Instruction | 4 |
| Middle School Students | 4 |
| Scores | 4 |
| Algorithms | 3 |
| Anxiety | 3 |
| More ▼ | |
Source
| Grantee Submission | 2 |
| Educational Testing Service | 1 |
| Interactive Learning… | 1 |
| International Educational… | 1 |
Author
| Amisha Jindal | 3 |
| Ashish Gurung | 3 |
| Erin Ottmar | 3 |
| Ji-Eun Lee | 3 |
| Reilly Norum | 3 |
| Sanika Nitin Patki | 3 |
| Barollet, Théo | 1 |
| Baron, Patricia | 1 |
| Bouchez Tichadou, Florent | 1 |
| Rastello, Fabrice | 1 |
| Weeks, Jonathan | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 4 |
| Speeches/Meeting Papers | 2 |
| Journal Articles | 1 |
| Numerical/Quantitative Data | 1 |
| Reports - Evaluative | 1 |
Education Level
| Junior High Schools | 4 |
| Middle Schools | 4 |
| Secondary Education | 4 |
| Elementary Education | 1 |
| High Schools | 1 |
Audience
Location
| California | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Interactive Learning Environments, 2024
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2)…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2023
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction; and…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Barollet, Théo; Bouchez Tichadou, Florent; Rastello, Fabrice – International Educational Data Mining Society, 2021
In Intelligent Tutoring Systems (ITS), methods to choose the next exercise for a student are inspired from generic recommender systems, used, for instance, in online shopping or multimedia recommendation. As such, collaborative filtering, especially matrix factorization, is often included as a part of recommendation algorithms in ITS. One notable…
Descriptors: Intelligent Tutoring Systems, Prediction, Internet, Purchasing
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2022
This paper demonstrates how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. We examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance prediction; and (2) what types of in-game features were associated with student…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Weeks, Jonathan; Baron, Patricia – Educational Testing Service, 2021
The current project, Exploring Math Education Relations by Analyzing Large Data Sets (EMERALDS) II, is an attempt to identify specific Common Core State Standards procedural, conceptual, and problem-solving competencies in earlier grades that best predict success in algebraic areas in later grades. The data for this study include two cohorts of…
Descriptors: Mathematics Education, Common Core State Standards, Problem Solving, Mathematics Tests

Peer reviewed
Direct link
