Publication Date
| In 2026 | 0 |
| Since 2025 | 6 |
| Since 2022 (last 5 years) | 44 |
| Since 2017 (last 10 years) | 44 |
| Since 2007 (last 20 years) | 44 |
Descriptor
| Accuracy | 44 |
| Algorithms | 44 |
| Prediction | 44 |
| Artificial Intelligence | 30 |
| Models | 18 |
| Learning Analytics | 15 |
| Academic Achievement | 12 |
| Classification | 12 |
| At Risk Students | 8 |
| College Students | 7 |
| Identification | 7 |
| More ▼ | |
Source
Author
| Wanli Xing | 2 |
| A. Brooks Bowden | 1 |
| Aammou, Souhaib | 1 |
| Abd-Ellatif, Laila | 1 |
| Abdelali Zakrani | 1 |
| Abdelgaber, Sayed | 1 |
| Abdelhadi Raihani | 1 |
| Abdellah Bennane | 1 |
| Ahmad Alzubi | 1 |
| Amel Awadelkarim | 1 |
| Amy Carroll-Scott | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 37 |
| Reports - Research | 32 |
| Dissertations/Theses -… | 4 |
| Reports - Evaluative | 4 |
| Reports - Descriptive | 3 |
| Information Analyses | 1 |
Education Level
Audience
| Policymakers | 1 |
Location
| Australia | 2 |
| South Korea | 2 |
| Africa | 1 |
| Asia | 1 |
| Europe | 1 |
| India | 1 |
| Massachusetts (Boston) | 1 |
| Netherlands | 1 |
| Pennsylvania (Philadelphia) | 1 |
| Switzerland | 1 |
| United States | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Mahmoud Abdasalam; Ahmad Alzubi; Kolawole Iyiola – Education and Information Technologies, 2025
This study introduces an optimized ensemble deep neural network (Optimized Ensemble Deep-NN) to enhance the accuracy of predicting student grades. This model solves the problem of different and complicated student performance data by using deep neural networks, ensemble learning, and a number of optimization algorithms, such as Adam, SGD, and RMS…
Descriptors: Grades (Scholastic), Prediction, Accuracy, Artificial Intelligence
Tenzin Doleck; Pedram Agand; Dylan Pirrotta – Education and Information Technologies, 2025
As is rapidly becoming clear, data science increasingly permeates many aspects of life. Educational research recognizes the importance and complexity of learning data science. In line with this imperative, there is a growing need to investigate the factors that influence student performance in data science tasks. In this paper, we aimed to apply…
Descriptors: Prediction, Data Science, Performance, Data Analysis
Senthil Kumaran, V.; Malar, B. – Interactive Learning Environments, 2023
Churn in e-learning refers to learners who gradually perform less and become lethargic and may potentially drop out from the course. Churn prediction is a highly sensitive and critical task in an e-learning system because inaccurate predictions might cause undesired consequences. A lot of approaches proposed in the literature analyzed and modeled…
Descriptors: Electronic Learning, Dropouts, Accuracy, Classification
Hayat Sahlaoui; El Arbi Abdellaoui Alaoui; Said Agoujil; Anand Nayyar – Education and Information Technologies, 2024
Predicting student performance using educational data is a significant area of machine learning research. However, class imbalance in datasets and the challenge of developing interpretable models can hinder accuracy. This study compares different variations of the Synthetic Minority Oversampling Technique (SMOTE) combined with classification…
Descriptors: Sampling, Classification, Algorithms, Prediction
Sotoudeh, Ramina; DiMaggio, Paul – Sociological Methods & Research, 2023
Sociologists increasingly face choices among competing algorithms that represent reasonable approaches to the same task, with little guidance in choosing among them. We develop a strategy that uses simulated data to identify the conditions under which different methods perform well and applies what is learned from the simulations to predict which…
Descriptors: Algorithms, Simulation, Prediction, Correlation
Hall, Michelle; Lees, Melinda; Serich, Cameron; Hunt, Richard – National Centre for Vocational Education Research (NCVER), 2023
This paper summarises exploratory analysis undertaken to evaluate the effectiveness of using machine learning approaches to calculate projected completion rates for vocational education and training (VET) programs, and compares this with the current approach used at the National Centre for Vocational Education Research (NCVER) -- Markov chains…
Descriptors: Vocational Education, Graduation Rate, Artificial Intelligence, Prediction
Stacey von Winckelmann – ProQuest LLC, 2023
The research problem addressed in this study is that racial bias programmed into predictive algorithm recommendations negatively impacts students in historically underrepresented groups. The purpose of this qualitative descriptive study was to explore the perception of algorithm accuracy among data professionals in higher education and explore the…
Descriptors: Prediction, Algorithms, Racism, Accuracy
Stacey Lynn von Winckelmann – Information and Learning Sciences, 2023
Purpose: This study aims to explore the perception of algorithm accuracy among data professionals in higher education. Design/methodology/approach: Social justice theory guided the qualitative descriptive study and emphasized four principles: access, participation, equity and human rights. Data collection included eight online open-ended…
Descriptors: Prediction, Algorithms, Racism, Accuracy
Harikesh Singh; Li-Minn Ang; Dipak Paudyal; Mauricio Acuna; Prashant Kumar Srivastava; Sanjeev Kumar Srivastava – Technology, Knowledge and Learning, 2025
Wildfires pose significant environmental threats in Australia, impacting ecosystems, human lives, and property. This review article provides a comprehensive analysis of various empirical and dynamic wildfire simulators alongside machine learning (ML) techniques employed for wildfire prediction in Australia. The study examines the effectiveness of…
Descriptors: Artificial Intelligence, Computer Software, Computer Simulation, Prediction
Senay Kocakoyun Aydogan; Turgut Pura; Fatih Bingül – Malaysian Online Journal of Educational Technology, 2024
In every culture and era, education is considered the most fundamental reality and rule that societies prioritize and deem essential. Throughout the process spanning thousands of years, from the emergence of writing to the present day, education has undergone various forms and formats of change. Education has been a continuous guide for shaping,…
Descriptors: Prediction, Academic Achievement, Artificial Intelligence, Algorithms
Raymond A. Opoku; Bo Pei; Wanli Xing – Journal of Learning Analytics, 2025
While high-accuracy machine learning (ML) models for predicting student learning performance have been widely explored, their deployment in real educational settings can lead to unintended harm if the predictions are biased. This study systematically examines the trade-offs between prediction accuracy and fairness in ML models trained on the…
Descriptors: Prediction, Accuracy, Electronic Learning, Artificial Intelligence
Xiaona Xia; Tianjiao Wang – Asia-Pacific Education Researcher, 2024
The artificial intelligence methods might be applied to see through the education problems, and make effective prediction and decision. The transformation from data to decision are inseparable from the learning analytics. In order to solve the dynamic multi-objective decision problems, a decision learning algorithm is designed to analyze the…
Descriptors: Learning, Behavior, Achievement, Learning Analytics
XinXiu Yang – International Journal of Information and Communication Technology Education, 2024
The objective of this work is to predict the employment rate of students based on the information in the SSM (student status management) in colleges and universities. Firstly, the relevant content of SSM is introduced. Secondly, the BP (Back Propagation) neural network, the LM (Levenberg Marquardt) algorithm, and the BR (Bayesian Regularization)…
Descriptors: Prediction, Employment Patterns, College Students, Algorithms
Chenglu Li; Wanli Xing; Walter Leite – Interactive Learning Environments, 2024
As instruction shifts away from traditional approaches, online learning has grown in popularity in K-12 and higher education. Artificial intelligence (AI) and learning analytics methods such as machine learning have been used by educational scholars to support online learners on a large scale. However, the fairness of AI prediction in educational…
Descriptors: Artificial Intelligence, Prediction, Mathematics Achievement, Algorithms
Melina Verger; Chunyang Fan; Sébastien Lallé; François Bouchet; Vanda Luengo – Journal of Educational Data Mining, 2024
Predictive student models are increasingly used in learning environments due to their ability to enhance educational outcomes and support stakeholders in making informed decisions. However, predictive models can be biased and produce unfair outcomes, leading to potential discrimination against certain individuals and harmful long-term…
Descriptors: Algorithms, Prediction, Bias, Classification

Peer reviewed
Direct link
