NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 202510
Since 202447
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 47 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Teo Susnjak – International Journal of Artificial Intelligence in Education, 2024
A significant body of recent research in the field of Learning Analytics has focused on leveraging machine learning approaches for predicting at-risk students in order to initiate timely interventions and thereby elevate retention and completion rates. The overarching feature of the majority of these research studies has been on the science of…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, At Risk Students
Peer reviewed Peer reviewed
Direct linkDirect link
Hanqiang Liu; Xiao Chen; Feng Zhao – Education and Information Technologies, 2024
Massive open online courses (MOOCs) have become one of the most popular ways of learning in recent years due to their flexibility and convenience. However, high dropout rate has become a prominent problem that hinders the further development of MOOCs. Therefore, the prediction of student dropouts is the key to further enhance the MOOCs platform.…
Descriptors: MOOCs, Video Technology, Behavior Patterns, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Robert D. Plumley; Matthew L. Bernacki; Jeffrey A. Greene; Shelbi Kuhlmann; Mladen Rakovic; Christopher J. Urban; Kelly A. Hogan; Chaewon Lee; Abigail T. Panter; Kathleen M. Gates – British Journal of Educational Technology, 2024
Even highly motivated undergraduates drift off their STEM career pathways. In large introductory STEM classes, instructors struggle to identify and support these students. To address these issues, we developed co-redesign methods in partnership with disciplinary experts to create high-structure STEM courses that better support students and produce…
Descriptors: Learning Analytics, Prediction, Undergraduate Study, Biology
Peer reviewed Peer reviewed
Parian Haghighat; Denisa Gandara; Lulu Kang; Hadis Anahideh – Grantee Submission, 2024
Predictive analytics is widely used in various domains, including education, to inform decision-making and improve outcomes. However, many predictive models are proprietary and inaccessible for evaluation or modification by researchers and practitioners, limiting their accountability and ethical design. Moreover, predictive models are often opaque…
Descriptors: Prediction, Learning Analytics, Multivariate Analysis, Regression (Statistics)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Senay Kocakoyun Aydogan; Turgut Pura; Fatih Bingül – Malaysian Online Journal of Educational Technology, 2024
In every culture and era, education is considered the most fundamental reality and rule that societies prioritize and deem essential. Throughout the process spanning thousands of years, from the emergence of writing to the present day, education has undergone various forms and formats of change. Education has been a continuous guide for shaping,…
Descriptors: Prediction, Academic Achievement, Artificial Intelligence, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Jyoti Prakash Meher; Rajib Mall – IEEE Transactions on Education, 2025
Contribution: This article suggests a novel method for diagnosing a learner's cognitive proficiency using deep neural networks (DNNs) based on her answers to a series of questions. The outcome of the forecast can be used for adaptive assistance. Background: Often a learner spends considerable amounts of time in attempting questions on the concepts…
Descriptors: Cognitive Ability, Assistive Technology, Adaptive Testing, Computer Assisted Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Qin Ni; Yifei Mi; Yonghe Wu; Liang He; Yuhui Xu; Bo Zhang – IEEE Transactions on Learning Technologies, 2024
Learning style recognition is an indispensable part of achieving personalized learning in online learning systems. The traditional inventory method for learning style identification faces the limitations such as subject and static characteristics. Therefore, an automatic and reliable learning style recognition mechanism is designed in this…
Descriptors: Cognitive Style, Electronic Learning, Prediction, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Austin C. Megli; Dayra Fallad-Mendoza; Monica Etsitty-Dorame; Jasmine Desiderio; Yan Chen; Damian Sanchez; Nick Flor; Charlotte N. Gunawardena – American Journal of Distance Education, 2024
Analyzing how participants learn from each other during online forums on discussion boards or social media platforms is often challenging. One of the predominant methods of analyzing such learning is through qualitative content analysis or interaction analysis. The Interaction Analysis Model (IAM), developed by Gunawardena, Lowe and Anderson which…
Descriptors: Learning Processes, Distance Education, Computer Mediated Communication, Social Media
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaona Xia; Tianjiao Wang – Asia-Pacific Education Researcher, 2024
The artificial intelligence methods might be applied to see through the education problems, and make effective prediction and decision. The transformation from data to decision are inseparable from the learning analytics. In order to solve the dynamic multi-objective decision problems, a decision learning algorithm is designed to analyze the…
Descriptors: Learning, Behavior, Achievement, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Damla Mustu Yaldiz; Saniye Kuleli; Ozlem Soydan Oktay; Nedime Selin Copgeven; Elif Akyol Emmungil; Yusuf Yildirim; Firat Sosuncu; Mehmet Firat – Turkish Online Journal of Distance Education, 2024
The e-learning domain has witnessed a shift from the traditional behavioral approach to an individual centered learning approach based on learning analytics, with the aim of creating personalized and learner sensitive designs. A systematic literature review of 284 articles published between 2011 and 2022 in 133 different journals was conducted to…
Descriptors: Learning Analytics, Personal Autonomy, Independent Study, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Yiming Liu; Lingyun Huang; Tenzin Doleck – Education and Information Technologies, 2024
Learning analytics dashboards (LADs) are emerging tools that convert abstract, complex information with visualizations to facilitate teachers' data-driven pedagogical decision-making. While many LADs have been designed, teachers' capacities for using such LADs are not well articulated in the literature. To fill the gap, this study provided a…
Descriptors: Learning Analytics, Teacher Attitudes, Self Management, Psychological Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Denisa Gandara; Hadis Anahideh – Society for Research on Educational Effectiveness, 2024
Background/Context: Predictive analytics has emerged as an indispensable tool in the education sector, offering insights that can improve student outcomes and inform more equitable policies (Friedler et al., 2019; Kleinberg et al., 2018). However, the widespread adoption of predictive models is hindered by several challenges, including the lack of…
Descriptors: Prediction, Learning Analytics, Ethics, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Yuang Wei; Bo Jiang – IEEE Transactions on Learning Technologies, 2024
Understanding student cognitive states is essential for assessing human learning. The deep neural networks (DNN)-inspired cognitive state prediction method improved prediction performance significantly; however, the lack of explainability with DNNs and the unitary scoring approach fail to reveal the factors influencing human learning. Identifying…
Descriptors: Cognitive Mapping, Models, Prediction, Short Term Memory
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shabnam Ara S. J.; Tanuja Ramachandriah; Manjula S. Haladappa – Online Learning, 2025
Predicting learner performance with precision is critical within educational systems, offering a basis for tailored interventions and instruction. The advent of big data analytics presents an opportunity to employ Machine Learning (ML) techniques to this end. Real-world data availability is often hampered by privacy concerns, prompting a shift…
Descriptors: Learning Analytics, Privacy, Artificial Intelligence, Regression (Statistics)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Montree Chinsomboon; Pallop Piriyasurawong – Higher Education Studies, 2024
The article is in the second phase of research is about "the big data architecture for pre-teacher preparation supply chain with prescriptive analytics of higher education in Thailand". The objectives of the study were (1) to study the pre-teacher preparation supply chain in Thailand, (2) to develop a model the big data system for the…
Descriptors: Supply and Demand, Information Management, Preservice Teacher Education, Preservice Teachers
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4