Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 1 |
| Since 2017 (last 10 years) | 1 |
| Since 2007 (last 20 years) | 1 |
Descriptor
Source
| Grantee Submission | 1 |
Author
| Cheng Liu | 1 |
| Teresa M. Ober | 1 |
| Yikai Lu | 1 |
| Ying Cheng | 1 |
Publication Type
| Reports - Research | 1 |
| Speeches/Meeting Papers | 1 |
Education Level
| High Schools | 1 |
| Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Yikai Lu; Teresa M. Ober; Cheng Liu; Ying Cheng – Grantee Submission, 2022
Machine learning methods for predictive analytics have great potential for uncovering trends in educational data. However, simple linear models still appear to be most widely used, in part, because of their interpretability. This study aims to address the issues of interpretability of complex machine learning classifiers by conducting feature…
Descriptors: Prediction, Statistics Education, Data Analysis, Learning Analytics

Peer reviewed
Direct link
