NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Elementary and Secondary…2
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 75 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Stoeckel, Marta R. – Physics Teacher, 2018
The abstract nature of electric potential difference (voltage) can make it a difficult concept to grasp, but understanding the relative nature of voltage is central to developing a conceptual understanding of electric circuits. In laboratory situations, I see these conceptual difficulties manifest when students have difficulty placing voltmeter…
Descriptors: Energy, Energy Education, Power Technology, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Delgado-Sanchez, J. M.; Lillo-Bravo, I. – European Journal of Engineering Education, 2021
The design of solar power plants and the operating principles are learned by engineering students during the last academic year. Typically, this subject is taught using the traditional methodology based on lectures where students are not considered as an active player of the class. The aim of this experience was to implement innovative…
Descriptors: Problem Solving, Energy, Teaching Methods, Engineering Education
Peer reviewed Peer reviewed
Direct linkDirect link
Jeffery, Rondo N.; Farhang, Amiri – Physics Teacher, 2016
The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant…
Descriptors: Science Experiments, Physics, Motion, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Yang; Santino, Luciano M.; Acharya, Shinjita; Anandarajah, Hari; D'Arcy, Julio M. – Journal of Chemical Education, 2017
The design and fabrication of functional scientific instrumentation allows students to forge a link between commonly reported numbers and physical material properties. Here, a two-point and four-point probe station for measuring electrical properties of solid materials is fabricated via 3D printing utilizing an inexpensive benchtop…
Descriptors: Energy, Electronics, Energy Education, Power Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Lima, Fabio M. S. – Physics Teacher, 2015
When all parts of an electric circuit are at the same potential, no electric current flows and it is said to be in "equilibrium." Otherwise, a current will flow from the higher potential parts to the lower ones, as when we make contact between the plates of a charged capacitor. The resulting discharging process towards equilibrium is a…
Descriptors: Physics, Teaching Methods, Educational Practices, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Lambert-Torres, Germano; de Moraes, Carlos Henrique Valerio; Coutinho, Maurilio Pereira; Martins, Helga Gonzaga; Borges da Silva, Luiz Eduardo – European Journal of Engineering Education, 2017
This paper describes a non-classical logic course primarily indicated for graduate students in electrical engineering and energy engineering. The content of this course is based on the vision that it is not enough for a student to indefinitely accumulate knowledge; it is necessary to explore all the occasions to update, deepen, and enrich that…
Descriptors: Engineering Education, Energy, Energy Education, Power Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Privat, Romain; Jaubert, Jean-Noe¨l; Berger, Etienne; Coniglio, Lucie; Lemaitre, Ce´cile; Meimaroglou, Dimitrios; Warth, Vale´rie – Journal of Chemical Education, 2016
Robust and fast methods for chemical or multiphase equilibrium calculation are routinely needed by chemical-process engineers working on sizing or simulation aspects. Yet, while industrial applications essentially require calculation tools capable of discriminating between stable and nonstable states and converging to nontrivial solutions,…
Descriptors: Energy Education, Power Technology, Scientific Concepts, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Branca, Mario; Quidacciolu, Rossana G.; Soletta, Isabella – Physics Teacher, 2013
The construction of a voltaic pile (battery) is a simple laboratory activity that commemorates the invention of this important device and is of great help in teaching physics. The voltaic pile is often seen as a scientific toy, with the "pile" being constructed from fruit. These toys use some strips of copper and zinc inserted in a piece…
Descriptors: Teaching Methods, Physics, Equipment, Power Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Gfroerer, Tim – Physics Teacher, 2013
Typical commercial solar panels consist of approximately 60 individual photovoltaic cells connected in series. Since the usual Kirchhoff rules apply, the current is uniform throughout the circuit, while the electric potential of the individual devices is cumulative. Hence, a solar panel is a good analog of a simple resistive series circuit, except…
Descriptors: Physics, Power Technology, Equipment, Energy Education
Peer reviewed Peer reviewed
Direct linkDirect link
Heiskanen, Eva; Nissilä, Heli; Tainio, Pasi – Applied Environmental Education and Communication, 2017
Peer-to-peer learning is gaining increasing attention in nonformal community-based environmental education. This article evaluates a novel modification of a concept for peer-to-peer learning about residential energy solutions (Open Homes). We organized collective "Energy Walks" visiting several homes with novel energy solutions and…
Descriptors: Peer Teaching, Teaching Methods, Energy Education, Energy Management
Peer reviewed Peer reviewed
Direct linkDirect link
Planinšic, Gorazd; Etkina, Eugenia – Physics Teacher, 2015
This is the fourth paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide readers with the description of experiments and the pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper provided…
Descriptors: Light, Problem Solving, Scientific Concepts, Inquiry
Peer reviewed Peer reviewed
Direct linkDirect link
Haugland, Ole Anton – Physics Teacher, 2014
The bicycle generator is often mentioned as an example of a method to produce electric energy. It is cheap and easily accessible, so it is a natural example to use in teaching. There are different types, but I prefer the old side-wall dynamo. The most common explanation of its working principle seems to be something like the illustration in Fig.…
Descriptors: Science Education, Teaching Methods, Power Technology, Energy Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Turner, Mathew J.; Webster, Rustin D. – American Journal of Engineering Education, 2017
This paper describes a student-centered approach to a power engineering technology course using the flipped or inverted classroom as well as active learning in the form of group discussions and team problem solving. The study compares student performance and perceptions of a traditional, teaching-centered classroom to two different flipped…
Descriptors: Comparative Analysis, Student Centered Learning, Engineering Technology, Power Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Delgado, Elvin – Journal of Geography in Higher Education, 2016
Energy issues are becoming increasingly common subjects of instruction in undergraduate- and graduate-level classrooms across a variety of disciplines. The interdisciplinary character of energy studies provides geographers with a great opportunity to present different applied and theoretical approaches to help students conceptualize energy issues…
Descriptors: Energy, Energy Education, Power Technology, Class Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Lara, V. O. M.; Amaral, D. F.; Faria, D.; Vieira, L. P. – Physics Education, 2014
We use a tablet to experimentally determine the dependencies of the magnetic field (B) on the electrical current and the axial distance from a coil (z). Our data shows good precision on the inverse cubic dependence of the magnetic field on the axial distance, B?z[superscript -3]. We obtain the value of air permeability µ[subscript air] with good…
Descriptors: Measurement Techniques, Magnets, Electronic Equipment, Physics
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5