NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Gössling, Alexander; Becker, Sebastian; Kuhn, Jochen – Physics Teacher, 2021
Supersonic free-fall jumps are excellent examples of kinematics in the context of drag. They have attracted a lot of media, public, and scientific interest. In 2012, Felix Baumgartner jumped from a height of approximately 38.969 km. During his flight he reached a top speed of 373 m/s, becoming the first human to travel faster than the speed of…
Descriptors: Science Instruction, Science Experiments, Physics, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Çoban, A.; Erol, M. – Physics Education, 2019
This work reports a rudimentary approach to teach and measure the kinetic friction coefficient using a smartphone that can effectively be employed for teaching purposes. More specifically, the kinetic friction coefficient, which is rather difficult to teach and measure, between various surfaces was determined by two different approaches using the…
Descriptors: Kinetics, Physics, Motion, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Leblond, Louis; Hicks, Melissa – Physics Teacher, 2021
Scientific laboratories are among the most challenging course components to integrate into online instruction. Available technology restricts the design and nature of experiments, and it can be hard to replicate the collaborative lab environment where frequent and immediate instructor feedback is the norm. Here we report on technological and…
Descriptors: Science Laboratories, Online Courses, Educational Technology, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Minkin, Leonard; Sikes, Daniel – Physics Education, 2018
A novel method of measuring the coefficients of kinetic and rolling friction is proposed. The method is simple to implement and reliable. Samples of measurements and calculations are presented.
Descriptors: Science Instruction, Kinetics, Physics, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Malgieri, Massimiliano; Rosi, Tommaso; Onorato, Pasquale; Oss, Stefano – Physics Education, 2018
We present an educational approach to the phenomenon of phosphorescent emission. The approach is based on a stochastic toy model, in which electron states are represented by rows of squares on a cardboard table, and coins on the squares switch from one row to the other based on the roll of two dice. The discussion of different mechanisms, giving…
Descriptors: Science Instruction, Scientific Concepts, Physics, Telecommunications
Peer reviewed Peer reviewed
Direct linkDirect link
Shakur, Asif; Sinatra, Taylor – Physics Teacher, 2013
The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…
Descriptors: Science Instruction, Physics, Motion, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Mungan, Carl E. – Physics Education, 2012
A pair of objects on an inclined plane are connected together by a string. The upper object is then connected to a fixed post via a spring. The situation is first analysed as a classroom exercise in using free-body diagrams to solve Newton's second law for a system of objects upon which many different kinds of force are acting (string tension,…
Descriptors: Physics, Science Instruction, Science Laboratories, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Sattar, Simeen – Journal of Chemical Education, 2011
Tris(1,10-phenanthroline)iron(II) is the basis of a suite of four experiments spanning 5 weeks. Students determine the rate law, activation energy, and equilibrium constant for the dissociation of the complex ion in acid solution and base dissociation constant for phenanthroline. The focus on one chemical system simplifies a daunting set of…
Descriptors: College Freshmen, College Science, Chemistry, Physics
Nelson, Jane Bray; Nelson, Jim – American Association of Physics Teachers (NJ3), 2009
Written by Jim and Jane Nelson, Teaching About Kinematics is the latest AAPT/PTRA resource book. Based on physics education research, the book provides teachers with the resources needed to introduce students to some of the fundamental building blocks of physics. It is a carefully thought-out, step-by-step laboratory-based introduction to the…
Descriptors: Physics, Science Instruction, Science Laboratories, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Lawlor, T. M. – Physics Teacher, 2008
The widely used PASCO laboratory equipment is an excellent way to introduce students to many topics in physics. In one case, PASCO's equipment may be too good! Various experiments exist for calculating the kinetic coefficient of friction by measuring the acceleration of a sliding object under some constant force. With ever more accurate equipment,…
Descriptors: Intervals, Kinetics, Physics, Laboratory Equipment
Mader, Jan; Winn, Mary – AAPT Press (BK), 2008
This book is designed to be a quick and easy resource for anyone teaching physics for the first time. Written after extensive research, this book is filled with reliable labs, demos and activities that work well in the classroom. Also included are lesson plans, diagrams, and teacher notes for every activity. The book is not the end--it is just a…
Descriptors: Optics, Motion, Physics, Science Instruction
Peer reviewed Peer reviewed
Russell, David W.; Lucas, Keith B.; McRobbie, Campbell J. – Research in Science Education, 2003
Investigates how microcomputer-based laboratory (MBL) activities specifically designed to be consistent with a constructivist theory of learning support or constrain student construction of understanding. Analysis of students' discourse and actions reveal that students invented numerous techniques for manipulating data in the service of their…
Descriptors: Computer Uses in Education, Foreign Countries, International Studies, Kinetics