NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Force Concept Inventory1
What Works Clearinghouse Rating
Showing 1 to 15 of 39 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Forringer, Edward Russell – Physics Teacher, 2022
In a 1993 book review, E. Pearlstein asks, "Why don't textbook authors begin their discussion of magnetism by talking about magnets? That's what students have experience with." A similar question can be asked, "Why don't professors have students measure the force between permanent magnets in introductory physics labs?" The…
Descriptors: Science Education, Physics, Magnets, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Zvorykin, Ilya Yu; Katkova, Mariia R.; Maslennikova, Yulia V. – Physics Education, 2022
In this article, we propose a simple and accessible model of a magnetic levitator fitted with a Hall sensor. This model also allows to determine the magnitude of the magnetic field within the levitator working volume. Students can also compare the experimental magnetic field values to reference values in magnetism textbooks. This Arduino-based…
Descriptors: Magnets, Science Instruction, Science Experiments, Laboratory Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Elliott, Leslie Atkins; Bolliou, André; Irving, Hanna; Jackson, Douglas – Physics Teacher, 2019
The Gaussian gun is an arrangement of magnets and ball bearings (pictured in Fig. 1) such that--when the leftmost ball is released--the rightmost ball is ejected at high speeds. The device has been described in several articles on energy education. The sudden appearance of kinetic energy offers a productive context for considering a range of…
Descriptors: Physics, Magnets, Energy, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Hansen, John; Stewart, John – Physical Review Physics Education Research, 2021
This work is the fourth of a series of papers applying multidimensional item response theory (MIRT) to widely used physics conceptual assessments. This study applies MIRT analysis using both exploratory and confirmatory methods to the Brief Electricity and Magnetism Assessment (BEMA) to explore the assessment's structure and to determine a…
Descriptors: Item Response Theory, Science Tests, Energy, Magnets
Peer reviewed Peer reviewed
Direct linkDirect link
Barth-Cohen, Lauren A.; Braden, Sarah K.; Young, Tamara G.; Gailey, Sara – Physical Review Physics Education Research, 2021
Research in undergraduate physics and in K-12 science education has demonstrated challenges and successes in facilitating student engagement with reasoning practices associated with professional physicists. Here we focus on one important dimension of physics reasoning, using evidence to revise models. While this topic has been explored at the…
Descriptors: Middle School Students, Physics, Science Instruction, Thinking Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Carroll, Felix A.; Blauch, David N. – Journal of Chemical Education, 2018
Three-dimensional printing was used to prepare a p-bonding model with embedded magnets. The model enables students to have a kinesthetic experience that simulates the energetics of bonding, antibonding, and nonbonding p-orbital interactions.
Descriptors: Science Instruction, Printing, Models, Magnets
Peer reviewed Peer reviewed
Direct linkDirect link
Eaton, Philip; Johnson, Keith; Barrett, Frank; Willoughby, Shannon – Physical Review Physics Education Research, 2019
For proper assessment selection understanding the statistical similarities amongst assessments that measure the same, or very similar, topics is imperative. This study seeks to extend the comparative analysis between the brief electricity and magnetism assessment (BEMA) and the conceptual survey of electricity and magnetism (CSEM) presented by…
Descriptors: Test Theory, Item Response Theory, Comparative Analysis, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Hart, Francis Xavier – Physics Teacher, 2018
We commonly ask students to compare the results of their experimental measurements with the predictions of a simple physical model that is well understood. However, in practice, physicists must compare their experimental measurements with the predictions of several models, none of which may work well over the entire range of measurements. The…
Descriptors: Science Instruction, Physics, Magnets, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Odden, Tor Ole. B.; Russ, Rosemary S. – Physical Review Physics Education Research, 2018
Although physics teachers often seek to help their students make sense of physics concepts, our field has yet to thoroughly explore how and why students engage in sensemaking. In this study we use the epistemic games framework to propose a model for students' sensemaking processes. Our analysis of a series of clinical interviews with introductory…
Descriptors: Physics, Science Instruction, Introductory Courses, Energy
Belcher, Nathan Tillman – ProQuest LLC, 2017
This action research study used data from multiple assessments in Mechanics and Electricity and Magnetism to determine the viability of Modeling Instruction as a pedagogy for students in AP Physics C: Mechanics and Electricity and Magnetism. Modeling Instruction is a guided-inquiry approach to teaching science in which students progress through…
Descriptors: Science Instruction, Physics, Advanced Placement Programs, Mechanics (Physics)
Peer reviewed Peer reviewed
Direct linkDirect link
Cheng, Meng-Fei; Lin, Jang-Long – International Journal of Science Education, 2015
Understanding the nature of models and engaging in modeling practice have been emphasized in science education. However, few studies discuss the relationships between students' views of scientific models and their ability to develop those models. Hence, this study explores the relationship between students' views of scientific models and their…
Descriptors: Foreign Countries, Models, Student Attitudes, Science Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Prytz, Kjell – Physics Education, 2015
Creative learning is discussed with respect to a specific physics topic. A teaching example, based on an apparatus that demonstrates the standard dynamo model of geomagnetism, is presented. It features many of the basic physics concepts within the syllabus of electromagnetism at high-school and university. To stimulate conceptual learning and to…
Descriptors: Physics, Teaching Methods, Units of Study, Electromechanical Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Onorato, Pasquale; De Ambrosis, Anna – Physics Education, 2013
We present a sequence of activities aimed at promoting both learning about magnetic forces and students' reflection about the conceptual bridge between magnetic forces on a moving charge and on a current-carrying wire in a magnetic field. The activity sequence, designed for students in high school or on introductory physics courses, has been…
Descriptors: Science Instruction, Learning Activities, Scientific Concepts, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Smith, Glenn S. – European Journal of Physics, 2011
Thought experiments involving a light clock are common in introductory treatments of special relativity, because they provide a simple way of demonstrating the non-intuitive phenomenon of time dilation. The properties of the ray or pulse of light that is continuously reflected between the parallel mirrors of the clock are often stated vaguely and…
Descriptors: Scientific Concepts, Energy, Magnets, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Waltner, Christine; Heran-Doerr, Eva; Rachel, Alexander; Wiesner, Hartmut – Physics Education, 2011
Scientists use models to describe and explain observed physical phenomena and to predict the outcomes of new phenomena. Choosing a productive model for describing or explaining a phenomenon is a routine part of the work of scientists but a rare exercise for our students. Students have difficulties understanding the meaning of the word "model" and…
Descriptors: Physics, Magnets, Science Instruction, Models
Previous Page | Next Page »
Pages: 1  |  2  |  3