NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Jinhui – Physics Teacher, 2020
The distant magnetic field of a magnetic dipole is usually derived via the magnetic vector potential and substantial vector calculus. This paper presents an alternate proof that is less mathematically intensive, and that ties together various problem-solving tricks (the principle of virtual work, observation that only instantaneous quantities…
Descriptors: Physics, Magnets, Calculus, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Kustusch, Mary Bridget; Manogue, Corinne; Price, Edward – Physical Review Physics Education Research, 2020
[This paper is part of the Focused Collection on Curriculum Development: Theory into Design.] A level of curricular design, called "design tactics," is identified to fill a gap in the research literature between the broad principles that guide curriculum development and the detailed writing of specific activities and lessons. The use of…
Descriptors: Physics, Curriculum Development, Science Instruction, Curriculum Design
Peer reviewed Peer reviewed
Direct linkDirect link
Zuza, Kristina; De Cock, Mieke; van Kampen, Paul; Kelly, Thomas; Guisasola, Jenaro – Physical Review Physics Education Research, 2020
In this work we present the application of design based research (DBR) methodology to conduct a systematic iterative study of the design and implementation of a teaching-learning sequence (TLS) on emf (electromotive force). This work is the final part of a broader study that started with the analysis of students' difficulties with emf in the…
Descriptors: Science Instruction, Physics, Scientific Concepts, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Abdusselam, Mustafa Serkan; Karal, Hasan – Technology, Pedagogy and Education, 2020
The purpose of this study is to investigate the effect of MagAR, an instructional material for teaching magnetism using augmented reality and sensing technology, on students' academic achievement and learning process, and to identify students' views about augmented reality. An embedded mixed-method approach was employed in this study. The study's…
Descriptors: Magnets, Computer Simulation, High School Students, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Mitts, Charles R. – Technology and Engineering Teacher, 2016
The International Technology and Engineering Educators Association (ITEEA) defines STEM as a new transdisciplinary subject in schools that integrates the disciplines of science, technology, engineering, and mathematics into a single course of study. There are three major problems with this definition: There is no consensus in support of the ITEEA…
Descriptors: STEM Education, Technology Education, Engineering Education, Intellectual Disciplines
Peer reviewed Peer reviewed
Direct linkDirect link
Prentice, A.; Fatuzzo, M.; Toepker, T. – Physics Teacher, 2015
By describing the motion of a charged particle in the well-known nonuniform field of a current-carrying long straight wire, a variety of teaching/learning opportunities are described: 1) Brief review of a standard problem; 2) Vector analysis; 3) Dimensionless variables; 4) Coupled differential equations; 5) Numerical solutions.
Descriptors: Magnets, Motion, Physics, Learning Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Onorato, Pasquale; De Ambrosis, Anna – Physics Education, 2013
We present a sequence of activities aimed at promoting both learning about magnetic forces and students' reflection about the conceptual bridge between magnetic forces on a moving charge and on a current-carrying wire in a magnetic field. The activity sequence, designed for students in high school or on introductory physics courses, has been…
Descriptors: Science Instruction, Learning Activities, Scientific Concepts, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Mungan, Carl E. – Physics Teacher, 2007
The following idealized problem is intended to illustrate some basic thermodynamic concepts involved in kinetic friction. A block of mass m is sliding on top of a frictional, flat-topped table of mass M. The table is magnetically levitated, so that it can move without thermal contact and friction across a horizontal floor. The table is initially…
Descriptors: Thermodynamics, Physics, Science Instruction, Scientific Principles
Mader, Jan; Winn, Mary – AAPT Press (BK), 2008
This book is designed to be a quick and easy resource for anyone teaching physics for the first time. Written after extensive research, this book is filled with reliable labs, demos and activities that work well in the classroom. Also included are lesson plans, diagrams, and teacher notes for every activity. The book is not the end--it is just a…
Descriptors: Optics, Motion, Physics, Science Instruction
Peer reviewed Peer reviewed
Janulaw, Al – Science Scope, 1993
Describes making a magnetic pendulum similar to those seen in novelty shops. Presents an open-ended activity and a more structured activity using this pendulum. (PR)
Descriptors: Junior High Schools, Learning Activities, Magnets, Middle Schools
Peer reviewed Peer reviewed
Van Heuvelen, Alan; Allen, Leith; Mihas, Pavlos – Physics Teacher, 1999
Gives several sample experiment problems for electricity and magnetism. To solve an experiment problem, students have to do one or more of the following: clarify a poorly defined problem, divide a problem into parts, access the appropriate concept needed to solve each problem part, decide whether approximations are appropriate, design an…
Descriptors: Electricity, Experiments, Higher Education, Learning Activities
Peer reviewed Peer reviewed
Orozco, Geraldo Torres; And Others – Science and Children, 1994
Presents instructions and schematic diagrams for an activity that allows students to discover the relationship between electricity and magnetism. Students draw conclusions and form hypotheses regarding their observations. Suggestions for further study are provided for "real world" experiences by students. (ZWH)
Descriptors: Electric Circuits, Electricity, Elementary Education, Elementary School Science