NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Shachar Boublil; David Blair; David F. Treagust – International Journal of Science and Mathematics Education, 2024
The most famous equation in physics, E = mc[superscript 2], is rarely introduced in middle school physics curricula. Recent research has shown that teaching Einsteinian concepts at the middle school level is feasible and beneficial. This paper analyses an Einsteinian energy teaching module for Year 8 students (13-14 years old), which encompasses…
Descriptors: Physics, Science Instruction, Energy, Grade 8
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zeynep Baskan Takaoglu – Journal of Science Learning, 2024
Multiple representations are widely recognized for their significant role in concept learning. This study aimed to investigate the multiple representation translation skills of high school students at different grade levels about the concept of one-dimensional motion. 239 9th, 10th, and 11th-grade students participated in the study using a…
Descriptors: Foreign Countries, High School Students, Thinking Skills, Learning Strategies
Peer reviewed Peer reviewed
Direct linkDirect link
Sokolowski, Andrzej – Physics Education, 2021
Analysing graphs, formulating covariational relationships, and hypothesizing systems' behaviour have emerged as frequent objectives of contemporary research in physics education. As such, these studies aim to help students achieve these objectives. While a consensus has been reached on the cognitive benefits of emphasizing the structural domain of…
Descriptors: Graphs, Energy, Physics, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Low, David; Malik, Umairia; Wilson, Kate – Teaching Science, 2018
Large gender gaps in performance on questions involving projectile motion have been observed at high school and university level, even amongst high-achieving students. This gap is particularly problematic because projectile motion is typically one of the first topics formally taught in physics, and this may give girls an inappropriately negative…
Descriptors: Gender Differences, Science Instruction, Motion, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Viennot, Laurence; de Hosson, Cécile – International Journal of Science Education, 2015
This research documents the aims and the impact of a teaching experiment on how the absorption of light depends on the thickness of the absorbing medium. This teaching experiment is more specifically characterized as bringing to bear a "concept-driven interactive pathway". It is designed to make students analyse the absorption of light…
Descriptors: Science Instruction, Scientific Concepts, Light, Science Experiments
Peer reviewed Peer reviewed
Assis, A. K. T.; Peixoto, F. M. – Physics Teacher, 1992
Discusses the meaning of velocity in the Lorentz force law and to what the velocity of the charge is relative. Provides a brief summary of the history of the magnetic force. (23 references) (MDH)
Descriptors: Concept Formation, Force, Higher Education, Magnets
Byron, Frederick W., Jr.; Clement, John – 1980
This project had three major goals: (1) investigate the extent to which introductory physics students misuse or misunderstand formulas; (2) catalogue the typical ways in which they do this; and (3) begin the larger task of identifying key types of knowledge that successful problem solvers use to give formulas meaning. Exploratory interviews and…
Descriptors: Achievement, Algebra, College Science, Concept Formation
Peer reviewed Peer reviewed
Spurgin, C. B. – Physics Education, 1983
Compares various methods of defining derived quantities, arguing for a definitional formula using base or fundamental units in a word equation, or symbol-equations with the symbols explained. Suggests that fundamental units be defined operationally or left regarded as intuitive as in the case of length and time. (JM)
Descriptors: Concept Formation, Definitions, Equations (Mathematics), High Schools
Clement, John – Engineering Education, 1981
Presents transcripts of freshmen engineering majors solving elementary physics problems to examine some limitations of formula-centered approaches to problem solving. Although students use formulas successfully, the qualitative conception of the underlying physical situation is weak. Results from written tests indicate that this phenomenon may be…
Descriptors: College Science, Concept Formation, Concept Teaching, Engineering Education
Peer reviewed Peer reviewed
Tsuma, Orren G. K. – Physics Education, 1983
Discusses formal-economical/epistemic-powerful features of physics formulas: the first puts constructs in logical relations to each other, reducing constructs to symbols; the second describes the correspondence which links the construct to natural events. Implications of the dual nature of formulas (considered as efficient learning tools) for…
Descriptors: College Science, Concept Formation, Epistemology, Equations (Mathematics)
Peer reviewed Peer reviewed
Haugland, Ole Anton – Physics Teacher, 1991
Describes the modern hot-air balloon and the physics of ballooning. Proposes that students construct their own hot-air balloon and presents an experiment calculating the time needed for a balloon to rise to the ceiling of a gymnasium. (MDH)
Descriptors: Concept Formation, Experiential Learning, High Schools, Learning Activities