Publication Date
In 2025 | 6 |
Since 2024 | 25 |
Since 2021 (last 5 years) | 110 |
Since 2016 (last 10 years) | 160 |
Since 2006 (last 20 years) | 162 |
Descriptor
Source
Author
Baker, Ryan S. | 3 |
Gaševic, Dragan | 3 |
Ouyang, Fan | 3 |
Pardo, Abelardo | 3 |
Adams Becker, S. | 2 |
Alario-Hoyos, Carlos | 2 |
Alexandron, Giora | 2 |
Basson, Marita | 2 |
Bosch, Nigel | 2 |
Brooks, Christopher | 2 |
Brooks, D. Christopher | 2 |
More ▼ |
Publication Type
Reports - Research | 162 |
Journal Articles | 138 |
Speeches/Meeting Papers | 15 |
Tests/Questionnaires | 5 |
Information Analyses | 3 |
Books | 1 |
Non-Print Media | 1 |
Education Level
Audience
Location
China | 15 |
Australia | 11 |
Taiwan | 6 |
Turkey | 4 |
United Kingdom | 4 |
France | 3 |
Spain | 3 |
United States | 3 |
Colombia | 2 |
Europe | 2 |
Hong Kong | 2 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
International English… | 2 |
Test of English as a Foreign… | 2 |
Motivated Strategies for… | 1 |
Test of English for… | 1 |
What Works Clearinghouse Rating
Yuan Liu; Yongquan Dong; Chan Yin; Cheng Chen; Rui Jia – Education and Information Technologies, 2024
The open online course (MOOC) platform has seen an increase in usage, and there are a growing number of courses accessible for people to select. An effective method is urgently needed to recommend personalized courses for users. Although the existing course recommendation models consider that users' interests change over time, they often model…
Descriptors: MOOCs, Online Courses, Models, Course Selection (Students)
Oleksandra Poquet; Sven Trenholm; Marc Santolini – Educational Technology Research and Development, 2024
Interpersonal online interactions are key to digital learning pedagogies and student experiences. Researchers use learner log and text data collected by technologies that mediate learner interactions online to provide indicators about interpersonal interactions. However, analytical approaches used to derive these indicators face conceptual,…
Descriptors: Computer Mediated Communication, Interpersonal Communication, Online Courses, Discussion
Hutt, Stephen; Baker, Ryan S.; Ashenafi, Michael Mogessie; Andres-Bray, Juan Miguel; Brooks, Christopher – British Journal of Educational Technology, 2022
Learning analytics research presents challenges for researchers embracing the principles of open science. Protecting student privacy is paramount, but progress in increasing scientific understanding and improving educational outcomes depends upon open, scalable and replicable research. Findings have repeatedly been shown to be contextually…
Descriptors: Learning Analytics, Educational Research, Online Courses, Privacy
Taihe Cao; Zhaoli Zhang; Wenli Chen; Jiangbo Shu – Interactive Learning Environments, 2023
Online learning with the characteristics of flexibility and autonomy has become a widespread and popular mode of higher education in which students need to engage in self-regulated learning (SRL) to achieve success. The purpose of this study is to utilize clickstream data to reveal the time management of SRL. This study adopts learning analytics…
Descriptors: Time Management, Self Management, Online Courses, Learning Analytics
Wanli Xing; Hanxiang Du – Journal of Educational Computing Research, 2023
Online learning communities are becoming increasingly popular as they are known to support collaborative dialogue and knowledge building. Previous studies have typically focused on small, closed learning communities from an individual, static, and aggregated perspective. This research aims to advance our understanding of open and large online…
Descriptors: MOOCs, Social Networks, Learning Analytics, Online Courses
Brown, Alice; Lawrence, Jill; Basson, Marita; Axelsen, Megan; Redmond, Petrea; Turner, Joanna; Maloney, Suzanne; Galligan, Linda – Active Learning in Higher Education, 2023
Combining nudge theory with learning analytics, 'nudge analytics', is a relatively recent phenomenon in the educational context. Used, for example, to address such issues as concerns with student (dis)engagement, nudging students to take certain action or to change a behaviour towards active learning, can make a difference. However, knowing who to…
Descriptors: Online Courses, Learner Engagement, Learning Analytics, Intervention
Nuo Cheng; Wei Zhao; Xiaoqing Xu; Hongxia Liu; Jinhong Tao – Education and Information Technologies, 2024
Learning analytics dashboards are becoming increasingly common tools for providing feedback to learners. However, there is limited empirical evidence regarding the effects of learning analytics dashboard design features on learners' cognitive load, particularly in digital learning environments. To address this gap, we developed goal-based,…
Descriptors: Learning Analytics, Learning Management Systems, Cognitive Ability, Online Courses
Bulut, Okan; Gorgun, Guher; Yildirim-Erbasli, Seyma N.; Wongvorachan, Tarid; Daniels, Lia M.; Gao, Yizhu; Lai, Ka Wing; Shin, Jinnie – British Journal of Educational Technology, 2023
As universities around the world have begun to use learning management systems (LMSs), more learning data have become available to gain deeper insights into students' learning processes and make data-driven decisions to improve student learning. With the availability of rich data extracted from the LMS, researchers have turned much of their…
Descriptors: Formative Evaluation, Learning Analytics, Models, Learning Management Systems
Juan Antonio Martinez-Carrascal; Jorge Munoz-Gama; Teresa Sancho-Vinuesa – IEEE Transactions on Learning Technologies, 2024
Academic institutions dedicate a substantial effort to ensure the academic success of their students. At the course level, teachers recommend learning paths (RLPs) for students to guarantee the achievement of their learning outcomes. In terms of performance, these kinds of approaches are deemed more effective than others based uniquely on…
Descriptors: Online Courses, Mathematics Instruction, Undergraduate Students, Mathematics Achievement
Hui Han; Silvana Trimi – Education and Information Technologies, 2024
Cloud computing-based online education has played a vital role in enabling uninterrupted learning during crises such as the COVID-19 pandemic. This study explored the key variables associated with cloud computing that can effectively support the operation of online education platforms. By analyzing real data from 63 online learning platforms, the…
Descriptors: Computer Software, Learning Management Systems, Online Courses, Correlation
Using Analytics to Predict Students' Interactions with Learning Management Systems in Online Courses
Ali Alshammari – Education and Information Technologies, 2024
In online education, it is widely recognized that interaction and engagement have an impact on students' academic performance. While previous research has extensively explored interactions between students, instructors, and content, there has been limited exploration of course design elements that promote the fourth type of interaction:…
Descriptors: Learning Analytics, Learning Management Systems, Academic Achievement, Correlation
Mubarak, Ahmed Ali; Cao, Han; Ahmed, Salah A. M. – Education and Information Technologies, 2021
Analysis of learning behavior of MOOC enthusiasts has become a posed challenge in the Learning Analytics field, which is especially related to video lecture data, since most learners watch the same online lecture videos. It helps to conduct a comprehensive analysis of such behaviors and explore various learning patterns for learners and predict…
Descriptors: Learning Analytics, Online Courses, Video Technology, Artificial Intelligence
Tong, Yao; Zhan, Zehui – Interactive Technology and Smart Education, 2023
Purpose: The purpose of this study is to set up an evaluation model to predict massive open online courses (MOOC) learning performance by analyzing MOOC learners' online learning behaviors, and comparing three algorithms -- multiple linear regression (MLR), multilayer perceptron (MLP) and classification and regression tree (CART).…
Descriptors: MOOCs, Online Courses, Learning Analytics, Prediction
Yang, Tzu-Chi; Chen, Sherry Y. – Interactive Learning Environments, 2023
Individual differences exist among learners. Among various individual differences, cognitive styles can strongly predict learners' learning behavior. Therefore, cognitive styles are essential for the design of online learning. There are a variety of cognitive style dimensions and overlaps exist among these dimensions. In particular, Witkin's field…
Descriptors: Student Behavior, Educational Technology, Electronic Learning, Cognitive Style
Lu, Chang; Cutumisu, Maria – International Journal of Educational Technology in Higher Education, 2022
In traditional school-based learning, attendance was regarded as a proxy for engagement and key indicator for performance. However, few studies have explored the effect of in-class attendance in technology-enhanced courses that are increasingly provided by secondary institutions. This study collected n = 367 undergraduate students' log files from…
Descriptors: Learner Engagement, Academic Achievement, Formative Evaluation, Attendance Patterns