Publication Date
| In 2026 | 0 |
| Since 2025 | 330 |
| Since 2022 (last 5 years) | 962 |
| Since 2017 (last 10 years) | 1269 |
| Since 2007 (last 20 years) | 1633 |
Descriptor
| Natural Language Processing | 1746 |
| Artificial Intelligence | 923 |
| Technology Uses in Education | 525 |
| Foreign Countries | 387 |
| Man Machine Systems | 233 |
| Computer Software | 220 |
| Feedback (Response) | 205 |
| Models | 202 |
| Educational Technology | 200 |
| Computational Linguistics | 199 |
| Intelligent Tutoring Systems | 196 |
| More ▼ | |
Source
Author
Publication Type
Education Level
Audience
| Teachers | 14 |
| Researchers | 11 |
| Administrators | 4 |
| Policymakers | 4 |
| Practitioners | 3 |
| Students | 3 |
| Counselors | 1 |
| Parents | 1 |
| Support Staff | 1 |
Location
| China | 48 |
| Australia | 30 |
| Germany | 27 |
| United Kingdom | 23 |
| Turkey | 21 |
| Canada | 20 |
| Spain | 20 |
| Taiwan | 19 |
| United States | 19 |
| Hong Kong | 15 |
| Pennsylvania | 14 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Lisa Marie Ripoll Y Schmitz; Philipp Sonnleitner – Large-scale Assessments in Education, 2025
Background: The increasing capabilities of generative artificial intelligence (AI), exemplified by OpenAI's transformer-based language model GPT-4 (ChatGPT), have drawn attention to its application in educational contexts. This study evaluates the potential of such models in generating German reading comprehension texts for educational large-scale…
Descriptors: Artificial Intelligence, Technology Uses in Education, Man Machine Systems, Written Language
Amanda Light Dunbar; Sandra Chang-Kredl – Changing English: Studies in Culture and Education, 2025
Long before ChatGPT, it was an open secret that students did not always read the books they were assigned in their English Language Arts (ELA) classes, relying instead on online study guides like SparkNotes. Via a retrospective survey, our exploratory study examined (1) the rate of SparkNotes use among high-school ELA students; (2) why students…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, Language Arts
Lei Cao; Kien Tsong Chau; Wan Ahmad Jaafar Wan Yahaya – International Journal of Game-Based Learning, 2025
In cultural relic restoration learning, developing both knowledge proficiency and self-efficacy is essential for academic success and professional competency. However, conventional learning methods often lack interactive elements that support cognitive engagement and skill acquisition. To address this limitation, this study introduced a…
Descriptors: Game Based Learning, Artificial Intelligence, Acoustics, Technology Uses in Education
Wesley Morris; Scott Crossley; Langdon Holmes; Chaohua Ou; Mihai Dascalu; Danielle McNamara – International Journal of Artificial Intelligence in Education, 2025
As intelligent textbooks become more ubiquitous in classrooms and educational settings, the need to make them more interactive arises. An alternative is to ask students to generate knowledge in response to textbook content and provide feedback about the produced knowledge. This study develops Natural Language Processing models to automatically…
Descriptors: Formative Evaluation, Feedback (Response), Textbooks, Artificial Intelligence
Tsiola, Anna – ProQuest LLC, 2021
Naturalistic language learning is contextually grounded. When people learn their first (L1) and often their second (L2) language, they do so in various contexts. In this dissertation I examine the effect of various contexts on language development. Part 1 describes the effects of textual, linguistic context in reading. I employed an eye-tracking…
Descriptors: Natural Language Processing, Second Language Learning, Language Processing, Language Acquisition
Wongvorachan, Tarid; Lai, Ka Wing; Bulut, Okan; Tsai, Yi-Shan; Chen, Guanliang – Journal of Applied Testing Technology, 2022
Feedback is a crucial component of student learning. As advancements in technology have enabled the adoption of digital learning environments with assessment capabilities, the frequency, delivery format, and timeliness of feedback derived from educational assessments have also changed progressively. Advanced technologies powered by Artificial…
Descriptors: Artificial Intelligence, Feedback (Response), Learning Analytics, Natural Language Processing
Matsuda, Noboru; Wood, Jesse; Shrivastava, Raj; Shimmei, Machi; Bier, Norman – Journal of Educational Data Mining, 2022
A model that maps the requisite skills, or knowledge components, to the contents of an online course is necessary to implement many adaptive learning technologies. However, developing a skill model and tagging courseware contents with individual skills can be expensive and error prone. We propose a technology to automatically identify latent…
Descriptors: Skills, Models, Identification, Courseware
Mahowald, Kyle; Kachergis, George; Frank, Michael C. – First Language, 2020
Ambridge calls for exemplar-based accounts of language acquisition. Do modern neural networks such as transformers or word2vec -- which have been extremely successful in modern natural language processing (NLP) applications -- count? Although these models often have ample parametric complexity to store exemplars from their training data, they also…
Descriptors: Models, Language Processing, Computational Linguistics, Language Acquisition
Ariely, Moriah; Nazaretsky, Tanya; Alexandron, Giora – International Journal of Artificial Intelligence in Education, 2023
Machine learning algorithms that automatically score scientific explanations can be used to measure students' conceptual understanding, identify gaps in their reasoning, and provide them with timely and individualized feedback. This paper presents the results of a study that uses Hebrew NLP to automatically score student explanations in Biology…
Descriptors: Artificial Intelligence, Algorithms, Natural Language Processing, Hebrew
Kenworthy, Jared B.; Doboli, Simona; Alsayed, Omar; Choudhary, Rishabh; Jaed, Abu; Minai, Ali A.; Paulus, Paul B. – Creativity Research Journal, 2023
We present the results of an ongoing collaboration between computer science and psychology researchers that employs Natural Language Processing (NLP) methods to examine the trajectory of semantic space used during group idea generation sessions. Specifically, we track and estimate the region of semantic space being used and the degree to which new…
Descriptors: Computer Science, Psychology, Researchers, Natural Language Processing
Torres-Jimenez, Jose; Lescano, Germán; Lara-Alvarez, Carlos; Mitre-Hernandez, Hugo – Education and Information Technologies, 2023
Conflicts play an important role to improve group learning effectiveness; they can be decreased, increased, or ignored. Given the sequence of messages of a collaborative group, we are interested in recognizing conflicts (detecting whether a conflict exists or not). This is not an easy task because of different types of natural language…
Descriptors: Conflict, Identification, Computer Assisted Instruction, Cooperative Learning
Monteiro, Kátia; Crossley, Scott; Botarleanu, Robert-Mihai; Dascalu, Mihai – Language Testing, 2023
Lexical frequency benchmarks have been extensively used to investigate second language (L2) lexical sophistication, especially in language assessment studies. However, indices based on semantic co-occurrence, which may be a better representation of the experience language users have with lexical items, have not been sufficiently tested as…
Descriptors: Second Language Learning, Second Languages, Native Language, Semantics
Unger, Layla; Yim, Hyungwook; Savic, Olivera; Dennis, Simon; Sloutsky, Vladimir M. – Developmental Science, 2023
Recent years have seen a flourishing of Natural Language Processing models that can mimic many aspects of human language fluency. These models harness a simple, decades-old idea: It is possible to learn a lot about word meanings just from exposure to language, because words similar in meaning are used in language in similar ways. The successes of…
Descriptors: Natural Language Processing, Language Usage, Vocabulary Development, Linguistic Input
Micheal M. van Wyk; Michael Agyemang Adarkwah; Samuel Amponsah – Open Praxis, 2023
The launch of ChatGPT has been revolutionary. This AI chatbot can produce conversations which are indistinguishable from that of humans. This exploratory qualitative study is foregrounded in a constructivist-interpretative perspective. The principal objective of this paper is to explore the views of academics on ChatGPT as an AI-based learning…
Descriptors: Artificial Intelligence, Natural Language Processing, Higher Education, Learning Strategies
Chau, Hung; Labutov, Igor; Thaker, Khushboo; He, Daqing; Brusilovsky, Peter – International Journal of Artificial Intelligence in Education, 2021
The increasing popularity of digital textbooks as a new learning media has resulted in a growing interest in developing a new generation of "adaptive textbooks" that can help readers to learn better through adapting to the readers' learning goals and the current state of knowledge. These adaptive textbooks are most frequently powered by…
Descriptors: Automation, Textbooks, Computer Uses in Education, Artificial Intelligence

Peer reviewed
Direct link
