Publication Date
In 2025 | 24 |
Since 2024 | 66 |
Since 2021 (last 5 years) | 111 |
Since 2016 (last 10 years) | 151 |
Since 2006 (last 20 years) | 192 |
Descriptor
Feedback (Response) | 194 |
Natural Language Processing | 194 |
Artificial Intelligence | 97 |
Technology Uses in Education | 59 |
Automation | 47 |
Intelligent Tutoring Systems | 45 |
Foreign Countries | 41 |
Educational Technology | 39 |
Essays | 37 |
Teaching Methods | 36 |
Second Language Learning | 33 |
More ▼ |
Source
Author
Publication Type
Education Level
Audience
Administrators | 1 |
Parents | 1 |
Researchers | 1 |
Students | 1 |
Teachers | 1 |
Location
China | 6 |
Australia | 4 |
Hong Kong | 4 |
Brazil | 3 |
California | 3 |
Germany | 3 |
Israel | 3 |
Pennsylvania | 3 |
Texas | 3 |
United Kingdom | 3 |
Asia | 2 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Test of English as a Foreign… | 2 |
International English… | 1 |
Massachusetts Comprehensive… | 1 |
Michigan Test of English… | 1 |
Motivated Strategies for… | 1 |
Program for International… | 1 |
Writing Apprehension Test | 1 |
What Works Clearinghouse Rating
Suping Yi; Wayan Sintawati; Yibing Zhang – Journal of Computer Assisted Learning, 2025
Background: Natural language processing (NLP) and machine learning technologies offer significant advantages, such as facilitating the delivery of reflective feedback in collaborative learning environments while minimising technical constraints for educators related to time and location. Recently, scholars' interest in reflective feedback has…
Descriptors: Reflection, Feedback (Response), Cooperative Learning, Natural Language Processing
Da-Wei Zhang; Melissa Boey; Yan Yu Tan; Alexis Hoh Sheng Jia – npj Science of Learning, 2024
This study evaluates the ability of large language models (LLMs) to deliver criterion-based grading and examines the impact of prompt engineering with detailed criteria on grading. Using well-established human benchmarks and quantitative analyses, we found that even free LLMs achieve criterion-based grading with a detailed understanding of the…
Descriptors: Artificial Intelligence, Natural Language Processing, Criterion Referenced Tests, Grading
Kirkwood Adams; Maria G. Baker – Thresholds in Education, 2025
In response to (1) studies finding that essay feedback generated by ChatGPT might be useful for student writers and (2) studies observing ChatGPT's tendency to adhere to narrow genre definitions when producing writing, our study seeks to examine whether ChatGPT can provide useful feedback in a first-year writing learning environment that targets a…
Descriptors: Freshman Composition, Artificial Intelligence, Man Machine Systems, Natural Language Processing
Anna Koufakou – Education and Information Technologies, 2024
Student opinions for a course are important to educators and administrators, regardless of the type of the course or the institution. Reading and manually analyzing open-ended feedback becomes infeasible for massive volumes of comments at institution level or online forums. In this paper, we collected and pre-processed a large number of course…
Descriptors: Learning, Opinions, Student Attitudes, Natural Language Processing
Annamaria V. Wolf – ProQuest LLC, 2023
Peer Evaluation Systems (PESs) allow members of student teams to provide one another with computer-mediated feedback in the form of qualitative, open-ended comments. The current research leverages unsupervised Natural Language Processing (NLP), namely Biterm Topic Modeling (BTM) and sentiment analysis, to uncover latent topics and degree of…
Descriptors: Students, Natural Language Processing, Peer Evaluation, Feedback (Response)
Jionghao Lin; Eason Chen; Zifei Han; Ashish Gurung; Danielle R. Thomas; Wei Tan; Ngoc Dang Nguyen; Kenneth R. Koedinger – International Educational Data Mining Society, 2024
Automated explanatory feedback systems play a crucial role in facilitating learning for a large cohort of learners by offering feedback that incorporates explanations, significantly enhancing the learning process. However, delivering such explanatory feedback in real-time poses challenges, particularly when high classification accuracy for…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, Feedback (Response)
Elisabeth Bauer; Constanze Richters; Amadeus J. Pickal; Moritz Klippert; Michael Sailer; Matthias Stadler – British Journal of Educational Technology, 2025
This study explores whether AI-generated adaptive feedback or static feedback is favourable for student interest and performance outcomes in learning statistics in a digital learning environment. Previous studies have favoured adaptive feedback over static feedback for skill acquisition, however, without investigating the outcome of students'…
Descriptors: Artificial Intelligence, Technology Uses in Education, Feedback (Response), Statistics Education
Elisabeth Bauer; Michael Sailer; Frank Niklas; Samuel Greiff; Sven Sarbu-Rothsching; Jan M. Zottmann; Jan Kiesewetter; Matthias Stadler; Martin R. Fischer; Tina Seidel; Detlef Urhahne; Maximilian Sailer; Frank Fischer – Journal of Computer Assisted Learning, 2025
Background: Artificial intelligence, particularly natural language processing (NLP), enables automating the formative assessment of written task solutions to provide adaptive feedback automatically. A laboratory study found that, compared with static feedback (an expert solution), adaptive feedback automated through artificial neural networks…
Descriptors: Artificial Intelligence, Feedback (Response), Computer Simulation, Natural Language Processing
Soomaiya Hamid; Narmeen Zakaria Bawany – Interactive Learning Environments, 2024
E-learning is the process of sharing knowledge out of the traditional classrooms through different online tools using internet. The availability and use of these tools are not easy for every student. Many institutions gather e-learning feedback to know the problems of students to improve their systems. In e-learning systems, typically a high…
Descriptors: Feedback (Response), Electronic Learning, Automation, Classification
Steffen Steinert; Karina E. Avila; Stefan Ruzika; Jochen Kuhn; Stefan Küchemann – Smart Learning Environments, 2024
Effectively supporting students in mastering all facets of self-regulated learning is a central aim of teachers and educational researchers. Prior research could demonstrate that formative feedback is an effective way to support students during self-regulated learning. In this light, we propose the application of Large Language Models (LLMs) to…
Descriptors: Formative Evaluation, Feedback (Response), Natural Language Processing, Artificial Intelligence
Mickie De Wet; Margarita Oja Da Silva; René Bohnsack – Innovations in Education and Teaching International, 2025
This study explores the use of large language models (LLMs) to generate feedback on essay-type assignments in Higher Education. Drawing on a seminal feedback framework, it examines the pedagogical and psychological effectiveness of LLM-generated feedback across three cohorts of MBA, MSc, and undergraduate students. Methods included linguistic…
Descriptors: Higher Education, College Students, Artificial Intelligence, Writing Evaluation
Hyeongdon Moon; Richard Lee Davis; Seyed Parsa Neshaei; Pierre Dillenbourg – International Educational Data Mining Society, 2025
Knowledge tracing models have enabled a range of intelligent tutoring systems to provide feedback to students. However, existing methods for knowledge tracing in learning sciences are predominantly reliant on statistical data and instructor-defined knowledge components, making it challenging to integrate AI-generated educational content with…
Descriptors: Artificial Intelligence, Natural Language Processing, Automation, Information Management
Victor-Alexandru Padurean; Tung Phung; Nachiket Kotalwar; Michael Liut; Juho Leinonen; Paul Denny; Adish Singla – International Educational Data Mining Society, 2025
The growing need for automated and personalized feedback in programming education has led to recent interest in leveraging generative AI for feedback generation. However, current approaches tend to rely on prompt engineering techniques in which predefined prompts guide the AI to generate feedback. This can result in rigid and constrained responses…
Descriptors: Automation, Student Writing Models, Feedback (Response), Programming
Qiao, Chen; Hu, Xiao – IEEE Transactions on Learning Technologies, 2023
Free text answers to short questions can reflect students' mastery of concepts and their relationships relevant to learning objectives. However, automating the assessment of free text answers has been challenging due to the complexity of natural language. Existing studies often predict the scores of free text answers in a "black box"…
Descriptors: Computer Assisted Testing, Automation, Test Items, Semantics
Lixiang Yan; Lele Sha; Linxuan Zhao; Yuheng Li; Roberto Martinez-Maldonado; Guanliang Chen; Xinyu Li; Yueqiao Jin; Dragan Gaševic – British Journal of Educational Technology, 2024
Educational technology innovations leveraging large language models (LLMs) have shown the potential to automate the laborious process of generating and analysing textual content. While various innovations have been developed to automate a range of educational tasks (eg, question generation, feedback provision, and essay grading), there are…
Descriptors: Educational Technology, Artificial Intelligence, Natural Language Processing, Educational Innovation