NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 90 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Blanco, Philip R. – Physics Education, 2022
A rocket must carry the fuel it expels in order to accelerate its structure and payload. The rocket equation relates the change in speed to the fuel mass expelled. To launch a spacecraft into Earth orbit requires a multi-stage rocket, since otherwise the mass of fuel required would be prohibitive. While the details vary among historical and…
Descriptors: Space Exploration, Transportation, Fuels, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Cross, Rod – Physics Education, 2022
A loop-the-loop experiment usually involves a ball rolling around a vertical loop. A different version of the experiment is described where a nut was allowed to slide around a vertical loop. In both experiments there is a large decrease in kinetic energy when the ball or the nut first enters the loop.
Descriptors: Science Instruction, Science Experiments, Physics, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Cross, Rod – Physics Education, 2022
A collision of one object with two or more objects is relatively complicated in general, but a simple example is provided by Newton's cradle since all the objects are identical and in line. In the present paper, an experiment is described where a heavy mallet collides head-on with two billiard balls. The two conservation equations indicate that…
Descriptors: Science Instruction, Physics, Science Experiments, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Marchewka, Avi – Physics Education, 2021
In order to describe the velocity of two bodies after they collide, Newton developed a phenomenological equation known as 'Newton's experimental law' (NEL). In this way, he was able to practically bypass the complication involving the details of the force that occurs during the collision of the two bodies. Today, we use NEL together with momentum…
Descriptors: Physics, Scientific Principles, Scientific Concepts, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
El-Tawargy, Ahmed S.; Ramadan, Wael A. – Physics Education, 2022
In this work, a simple rocking pendulum, in a circular arc shape, is presented. The idea is to put a rigid arc on a clean flat surface of glass and leave it to oscillate under the effect of a little impulse. Then, the periodic time of this arc pendulum's motion is experimentally determined. The mathematical analysis of the arc's motion is derived…
Descriptors: Science Instruction, Science Experiments, Scientific Concepts, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Blanco, Philip – Physics Teacher, 2020
A rocket in free space accelerates from rest by continuously expelling fuel; as its speed increases, its mass decreases. At what speed (and remaining mass) does the rocket carry maximum momentum? Maximum kinetic energy? The answers provide insights into the dynamics of variable-mass systems, and have applications to planetary defense that are…
Descriptors: Physics, Kinetics, Motion, Mechanics (Physics)
Peer reviewed Peer reviewed
Direct linkDirect link
Gróf, Andrea – Physics Teacher, 2021
Owing to the presence of the Coriolis effect, the rotation of Earth has a multitude of surprising consequences that make the mechanics of the atmosphere or the oceans different from that of a fluid in a container. Since the Coriolis effect also captures the imagination of screenwriters, contributing to the continual exposure of students to bogus…
Descriptors: Science Instruction, Scientific Concepts, Motion, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Carone, Delaney; Perkins, Ashley; Scott, Catherine – Science and Children, 2023
This lesson focuses specifically on teaching concepts of speed and its impact on energy, as well as providing a basic introduction to potential and kinetic energy to fourth-grade students. "Next Generation Science Standards" ("NGSS") 4-PS3-1 states that students should be able "to use evidence to construct an explanation…
Descriptors: Grade 4, Science Instruction, Energy, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Elliott, Leslie Atkins; Bolliou, André; Irving, Hanna; Jackson, Douglas – Physics Teacher, 2019
The Gaussian gun is an arrangement of magnets and ball bearings (pictured in Fig. 1) such that--when the leftmost ball is released--the rightmost ball is ejected at high speeds. The device has been described in several articles on energy education. The sudden appearance of kinetic energy offers a productive context for considering a range of…
Descriptors: Physics, Magnets, Energy, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Alejandro Parra Cordova; Omar Israel González Peña – Journal of Chemical Education, 2020
A five day activity that involves the construction and characterization of a small car whose motion is controlled by the vitamin C clock reaction is presented. The purpose of the activity is to engage first-year Science, Technology, Engineering, and Mathematics (STEM) students not majoring in the chemical sciences. Throughout the activity students…
Descriptors: Learner Engagement, Motor Vehicles, Motion, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Wadhwa, Ajay – Physics Education, 2019
We investigate the motion of fidget spinners of different configurations with the help of simple devices. Physical quantities associated with the fidget spinner motion like angular speed, moment of inertia and kinetic energy are determined and compared in different configurations. A configurable modification of the fidget spinners is done to…
Descriptors: Motion, Energy, Kinetics, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Bates, Alan – Physics Teacher, 2021
The law of conservation of momentum can be applied to a wide range of processes whether it is the collision of subatomic particles, rocket propulsion, or the recoil of a cannon. In this experiment two technologies, the Arduino microcontroller and a PASCO smart cart, are used to create a movable rubber band launcher. The Arduino microcontroller is…
Descriptors: Science Instruction, Motion, Physics, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Ginsberg, Edw S. – Physics Teacher, 2018
The compatibility of the Newtonian formulation of mechanical energy and the transformation equations of Galilean relativity is demonstrated for three simple examples of motion treated in most introductory physics courses (free fall, a frictionless inclined plane, and a mass/spring system). Only elementary concepts and mathematics, accessible to…
Descriptors: Energy, Scientific Concepts, Physics, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Blanco, Philip R. – Physics Education, 2019
Most rockets convert the energy stored in their propellant mass into the mechanical energy required to expel it as exhaust. The 'rocket equation', which describes how a rocket's speed changes with mass, is usually derived by assuming that this fuel is expelled at a constant relative velocity. However, this is a poor assumption for cases where the…
Descriptors: Physics, Motion, Scientific Concepts, Fuel Consumption
Peer reviewed Peer reviewed
Direct linkDirect link
Beck, Jordan P.; Muniz, Marc N.; Crickmore, Cassidy; Sizemore, Logan – Chemistry Education Research and Practice, 2020
Models that are used to predict and explain phenomena related to molecular vibration and rotation are ubiquitous in physical chemistry, and are of importance in many related fields. Yet, little work has been done to characterize student use and application of these models. We describe the results of a multi-year, multi-institutional qualitative…
Descriptors: Chemistry, Models, Science Instruction, Prediction
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6