Publication Date
In 2025 | 13 |
Since 2024 | 65 |
Since 2021 (last 5 years) | 209 |
Since 2016 (last 10 years) | 487 |
Since 2006 (last 20 years) | 1041 |
Descriptor
Monte Carlo Methods | 1793 |
Statistical Analysis | 381 |
Simulation | 367 |
Sample Size | 348 |
Comparative Analysis | 318 |
Computation | 307 |
Item Response Theory | 301 |
Models | 301 |
Correlation | 293 |
Error of Measurement | 257 |
Markov Processes | 234 |
More ▼ |
Source
Author
Kromrey, Jeffrey D. | 21 |
Fan, Xitao | 18 |
Barcikowski, Robert S. | 16 |
DeSarbo, Wayne S. | 14 |
Donoghue, John R. | 12 |
Ferron, John M. | 12 |
Finch, W. Holmes | 12 |
Zhang, Zhiyong | 11 |
Cohen, Allan S. | 10 |
Finch, Holmes | 10 |
Kim, Seock-Ho | 10 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 49 |
Practitioners | 22 |
Teachers | 19 |
Students | 4 |
Administrators | 2 |
Location
Germany | 10 |
Australia | 7 |
United Kingdom | 7 |
Canada | 6 |
Netherlands | 6 |
United States | 6 |
Belgium | 5 |
California | 5 |
Hong Kong | 5 |
South Korea | 5 |
Spain | 5 |
More ▼ |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 4 |
Pell Grant Program | 2 |
Aid to Families with… | 1 |
American Recovery and… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards without Reservations | 1 |
Meets WWC Standards with or without Reservations | 1 |
Does not meet standards | 1 |
Wolfgang Weidermann; Keith C. Herman; Wendy Reinke; Alexander von Eye – Grantee Submission, 2022
Although variable-oriented analyses are dominant in developmental psychopathology, researchers have championed a person-oriented approach that focuses on the individual as a totality. This view has methodological implications and various person-oriented methods have been developed to test person-oriented hypotheses. Configural frequency analysis…
Descriptors: Student Behavior, Behavior Patterns, Monte Carlo Methods, Statistical Analysis
Lee, Daniel Y.; Harring, Jeffrey R. – Journal of Educational and Behavioral Statistics, 2023
A Monte Carlo simulation was performed to compare methods for handling missing data in growth mixture models. The methods considered in the current study were (a) a fully Bayesian approach using a Gibbs sampler, (b) full information maximum likelihood using the expectation-maximization algorithm, (c) multiple imputation, (d) a two-stage multiple…
Descriptors: Monte Carlo Methods, Research Problems, Statistical Inference, Bayesian Statistics
Mangino, Anthony A.; Bolin, Jocelyn H.; Finch, W. Holmes – Educational and Psychological Measurement, 2023
This study seeks to compare fixed and mixed effects models for the purposes of predictive classification in the presence of multilevel data. The first part of the study utilizes a Monte Carlo simulation to compare fixed and mixed effects logistic regression and random forests. An applied examination of the prediction of student retention in the…
Descriptors: Prediction, Classification, Monte Carlo Methods, Foreign Countries
Basman, Munevver – International Journal of Assessment Tools in Education, 2023
To ensure the validity of the tests is to check that all items have similar results across different groups of individuals. However, differential item functioning (DIF) occurs when the results of individuals with equal ability levels from different groups differ from each other on the same test item. Based on Item Response Theory and Classic Test…
Descriptors: Test Bias, Test Items, Test Validity, Item Response Theory
Huang, Hening – Research Synthesis Methods, 2023
Many statistical methods (estimators) are available for estimating the consensus value (or average effect) and heterogeneity variance in interlaboratory studies or meta-analyses. These estimators are all valid because they are developed from or supported by certain statistical principles. However, no estimator can be perfect and must have error or…
Descriptors: Statistical Analysis, Computation, Measurement Techniques, Meta Analysis
Aidoo, Eric Nimako; Appiah, Simon K.; Boateng, Alexander – Journal of Experimental Education, 2021
This study investigated the small sample biasness of the ordered logit model parameters under multicollinearity using Monte Carlo simulation. The results showed that the level of biasness associated with the ordered logit model parameters consistently decreases for an increasing sample size while the distribution of the parameters becomes less…
Descriptors: Statistical Bias, Monte Carlo Methods, Simulation, Sample Size
Rank-Normalization, Folding, and Localization: An Improved [R-Hat] for Assessing Convergence of MCMC
Aki Vehtari; Andrew Gelman; Daniel Simpson; Bob Carpenter; Paul-Christian Burkner – Grantee Submission, 2021
Markov chain Monte Carlo is a key computational tool in Bayesian statistics, but it can be challenging to monitor the convergence of an iterative stochastic algorithm. In this paper we show that the convergence diagnostic [R-hat] of Gelman and Rubin (1992) has serious flaws. Traditional [R-hat] will fail to correctly diagnose convergence failures…
Descriptors: Markov Processes, Monte Carlo Methods, Bayesian Statistics, Efficiency
Musa Adekunle Ayanwale; Mdutshekelwa Ndlovu – Journal of Pedagogical Research, 2024
The COVID-19 pandemic has had a significant impact on high-stakes testing, including the national benchmark tests in South Africa. Current linear testing formats have been criticized for their limitations, leading to a shift towards Computerized Adaptive Testing [CAT]. Assessments with CAT are more precise and take less time. Evaluation of CAT…
Descriptors: Adaptive Testing, Benchmarking, National Competency Tests, Computer Assisted Testing
Yuanfang Liu; Mark H. C. Lai; Ben Kelcey – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Measurement invariance holds when a latent construct is measured in the same way across different levels of background variables (continuous or categorical) while controlling for the true value of that construct. Using Monte Carlo simulation, this paper compares the multiple indicators, multiple causes (MIMIC) model and MIMIC-interaction to a…
Descriptors: Classification, Accuracy, Error of Measurement, Correlation
Leszczensky, Lars; Wolbring, Tobias – Sociological Methods & Research, 2022
Does "X" affect "Y"? Answering this question is particularly difficult if reverse causality is looming. Many social scientists turn to panel data to address such questions of causal ordering. Yet even in longitudinal analyses, reverse causality threatens causal inference based on conventional panel models. Whereas the…
Descriptors: Attribution Theory, Causal Models, Comparative Analysis, Statistical Bias
Rüttenauer, Tobias – Sociological Methods & Research, 2022
Spatial regression models provide the opportunity to analyze spatial data and spatial processes. Yet, several model specifications can be used, all assuming different types of spatial dependence. This study summarizes the most commonly used spatial regression models and offers a comparison of their performance by using Monte Carlo experiments. In…
Descriptors: Models, Monte Carlo Methods, Social Science Research, Data Analysis
Yao, Yuling; Vehtari, Aki; Gelman, Andrew – Grantee Submission, 2022
When working with multimodal Bayesian posterior distributions, Markov chain Monte Carlo (MCMC) algorithms have difficulty moving between modes, and default variational or mode-based approximate inferences will understate posterior uncertainty. And, even if the most important modes can be found, it is difficult to evaluate their relative weights in…
Descriptors: Bayesian Statistics, Computation, Markov Processes, Monte Carlo Methods
Fatih Orcan – International Journal of Assessment Tools in Education, 2023
Among all, Cronbach's Alpha and McDonald's Omega are commonly used for reliability estimations. The alpha uses inter-item correlations while omega is based on a factor analysis result. This study uses simulated ordinal data sets to test whether the alpha and omega produce different estimates. Their performances were compared according to the…
Descriptors: Statistical Analysis, Monte Carlo Methods, Correlation, Factor Analysis
Hanif Akhtar – International Society for Technology, Education, and Science, 2023
For efficiency, Computerized Adaptive Test (CAT) algorithm selects items with the maximum information, typically with a 50% probability of being answered correctly. However, examinees may not be satisfied if they only correctly answer 50% of the items. Researchers discovered that changing the item selection algorithms to choose easier items (i.e.,…
Descriptors: Success, Probability, Computer Assisted Testing, Adaptive Testing
Xin Qiao; Akihito Kamata; Yusuf Kara; Cornelis Potgieter; Joseph Nese – Grantee Submission, 2023
In this article, the beta-binomial model for count data is proposed and demonstrated in terms of its application in the context of oral reading fluency (ORF) assessment, where the number of words read correctly (WRC) is of interest. Existing studies adopted the binomial model for count data in similar assessment scenarios. The beta-binomial model,…
Descriptors: Oral Reading, Reading Fluency, Bayesian Statistics, Markov Processes