Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 32 |
| Since 2017 (last 10 years) | 93 |
| Since 2007 (last 20 years) | 179 |
Descriptor
| Bayesian Statistics | 224 |
| Monte Carlo Methods | 224 |
| Markov Processes | 124 |
| Models | 91 |
| Item Response Theory | 81 |
| Computation | 66 |
| Simulation | 45 |
| Maximum Likelihood Statistics | 40 |
| Statistical Analysis | 35 |
| Statistical Inference | 34 |
| Test Items | 33 |
| More ▼ | |
Source
Author
| Levy, Roy | 5 |
| Lijuan Wang | 5 |
| Mislevy, Robert J. | 5 |
| Fox, Jean-Paul | 4 |
| Glas, Cees A. W. | 4 |
| Jiao, Hong | 4 |
| Johnson, Matthew S. | 4 |
| Zhang, Zhiyong | 4 |
| de la Torre, Jimmy | 4 |
| Chang, Hua-Hua | 3 |
| Culpepper, Steven Andrew | 3 |
| More ▼ | |
Publication Type
| Journal Articles | 168 |
| Reports - Research | 140 |
| Reports - Evaluative | 39 |
| Reports - Descriptive | 31 |
| Speeches/Meeting Papers | 14 |
| Dissertations/Theses -… | 10 |
| Information Analyses | 4 |
| Opinion Papers | 2 |
| Numerical/Quantitative Data | 1 |
Education Level
Audience
| Researchers | 4 |
| Students | 1 |
| Teachers | 1 |
Location
| Germany | 3 |
| Taiwan | 3 |
| Armenia | 1 |
| Australia | 1 |
| Austria | 1 |
| Colombia | 1 |
| Iran | 1 |
| Italy | 1 |
| Missouri | 1 |
| New York | 1 |
| North Carolina | 1 |
| More ▼ | |
Laws, Policies, & Programs
| Aid to Families with… | 1 |
| No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Lee, Soo; Suh, Youngsuk – Journal of Educational Measurement, 2018
Lord's Wald test for differential item functioning (DIF) has not been studied extensively in the context of the multidimensional item response theory (MIRT) framework. In this article, Lord's Wald test was implemented using two estimation approaches, marginal maximum likelihood estimation and Bayesian Markov chain Monte Carlo estimation, to detect…
Descriptors: Item Response Theory, Sample Size, Models, Error of Measurement
Feng, Junchen – ProQuest LLC, 2017
The future of education is human expertise and artificial intelligence working in conjunction, a revolution that will change the education as we know it. The Intelligent Tutoring System is a key component of this future. A quantitative measurement of efficacies of practice to heterogeneous learners is the cornerstone of building an effective…
Descriptors: Intelligent Tutoring Systems, Learning Processes, Bayesian Statistics, Models
Depaoli, Sarah; Clifton, James P.; Cobb, Patrice R. – Journal of Educational and Behavioral Statistics, 2016
A review of the software Just Another Gibbs Sampler (JAGS) is provided. We cover aspects related to history and development and the elements a user needs to know to get started with the program, including (a) definition of the data, (b) definition of the model, (c) compilation of the model, and (d) initialization of the model. An example using a…
Descriptors: Monte Carlo Methods, Markov Processes, Computer Software, Models
Meng, Xiang-Bin; Tao, Jian; Chang, Hua-Hua – Journal of Educational Measurement, 2015
The assumption of conditional independence between the responses and the response times (RTs) for a given person is common in RT modeling. However, when the speed of a test taker is not constant, this assumption will be violated. In this article we propose a conditional joint model for item responses and RTs, which incorporates a covariance…
Descriptors: Reaction Time, Test Items, Accuracy, Models
Culpepper, Steven Andrew; Park, Trevor – Journal of Educational and Behavioral Statistics, 2017
A latent multivariate regression model is developed that employs a generalized asymmetric Laplace (GAL) prior distribution for regression coefficients. The model is designed for high-dimensional applications where an approximate sparsity condition is satisfied, such that many regression coefficients are near zero after accounting for all the model…
Descriptors: Bayesian Statistics, Multivariate Analysis, Item Response Theory, Regression (Statistics)
Dardick, William R.; Mislevy, Robert J. – Educational and Psychological Measurement, 2016
A new variant of the iterative "data = fit + residual" data-analytical approach described by Mosteller and Tukey is proposed and implemented in the context of item response theory psychometric models. Posterior probabilities from a Bayesian mixture model of a Rasch item response theory model and an unscalable latent class are expressed…
Descriptors: Bayesian Statistics, Probability, Data Analysis, Item Response Theory
Pfaffel, Andreas; Spiel, Christiane – Practical Assessment, Research & Evaluation, 2016
Approaches to correcting correlation coefficients for range restriction have been developed under the framework of large sample theory. The accuracy of missing data techniques for correcting correlation coefficients for range restriction has thus far only been investigated with relatively large samples. However, researchers and evaluators are…
Descriptors: Correlation, Sample Size, Error of Measurement, Accuracy
Dorie, Vincent; Harada, Masataka; Carnegie, Nicole Bohme; Hill, Jennifer – Grantee Submission, 2016
When estimating causal effects, unmeasured confounding and model misspecification are both potential sources of bias. We propose a method to simultaneously address both issues in the form of a semi-parametric sensitivity analysis. In particular, our approach incorporates Bayesian Additive Regression Trees into a two-parameter sensitivity analysis…
Descriptors: Bayesian Statistics, Mathematical Models, Causal Models, Statistical Bias
Andrew Gelman; Daniel Lee; Jiqiang Guo – Journal of Educational and Behavioral Statistics, 2015
Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers'…
Descriptors: Programming Languages, Bayesian Statistics, Inferences, Monte Carlo Methods
Sen, Sedat – International Journal of Testing, 2018
Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood…
Descriptors: Item Response Theory, Comparative Analysis, Computation, Maximum Likelihood Statistics
Wu, Mike; Davis, Richard L.; Domingue, Benjamin W.; Piech, Chris; Goodman, Noah – International Educational Data Mining Society, 2020
Item Response Theory (IRT) is a ubiquitous model for understanding humans based on their responses to questions, used in fields as diverse as education, medicine and psychology. Large modern datasets offer opportunities to capture more nuances in human behavior, potentially improving test scoring and better informing public policy. Yet larger…
Descriptors: Item Response Theory, Accuracy, Data Analysis, Public Policy
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model…
Descriptors: Error of Measurement, Correlation, Simulation, Bayesian Statistics
Li, Tongyun; Jiao, Hong; Macready, George B. – Educational and Psychological Measurement, 2016
The present study investigates different approaches to adding covariates and the impact in fitting mixture item response theory models. Mixture item response theory models serve as an important methodology for tackling several psychometric issues in test development, including the detection of latent differential item functioning. A Monte Carlo…
Descriptors: Item Response Theory, Psychometrics, Test Construction, Monte Carlo Methods
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size
Can, Seda; van de Schoot, Rens; Hox, Joop – Educational and Psychological Measurement, 2015
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation…
Descriptors: Factor Analysis, Comparative Analysis, Maximum Likelihood Statistics, Bayesian Statistics

Peer reviewed
Direct link
