NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yamaguchi, Kazuhiro – Journal of Educational and Behavioral Statistics, 2023
Understanding whether or not different types of students master various attributes can aid future learning remediation. In this study, two-level diagnostic classification models (DCMs) were developed to represent the probabilistic relationship between external latent classes and attribute mastery patterns. Furthermore, variational Bayesian (VB)…
Descriptors: Bayesian Statistics, Classification, Statistical Inference, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Pavel Chernyavskiy; Traci S. Kutaka; Carson Keeter; Julie Sarama; Douglas Clements – Grantee Submission, 2024
When researchers code behavior that is undetectable or falls outside of the validated ordinal scale, the resultant outcomes often suffer from informative missingness. Incorrect analysis of such data can lead to biased arguments around efficacy and effectiveness in the context of experimental and intervention research. Here, we detail a new…
Descriptors: Bayesian Statistics, Mathematics Instruction, Learning Trajectories, Item Response Theory
Tong, Xin; Zhang, Zhiyong – Grantee Submission, 2020
Despite broad applications of growth curve models, few studies have dealt with a practical issue -- nonnormality of data. Previous studies have used Student's "t" distributions to remedy the nonnormal problems. In this study, robust distributional growth curve models are proposed from a semiparametric Bayesian perspective, in which…
Descriptors: Robustness (Statistics), Bayesian Statistics, Models, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Sen, Sedat – International Journal of Testing, 2018
Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood…
Descriptors: Item Response Theory, Comparative Analysis, Computation, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Qian, Xiaoyu; Nandakumar, Ratna; Glutting, Joseoph; Ford, Danielle; Fifield, Steve – ETS Research Report Series, 2017
In this study, we investigated gender and minority achievement gaps on 8th-grade science items employing a multilevel item response methodology. Both gaps were wider on physics and earth science items than on biology and chemistry items. Larger gender gaps were found on items with specific topics favoring male students than other items, for…
Descriptors: Item Analysis, Gender Differences, Achievement Gap, Grade 8
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Hung-Yu; Wang, Wen-Chung – Educational and Psychological Measurement, 2014
In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…
Descriptors: Item Response Theory, Hierarchical Linear Modeling, Computation, Test Reliability
Peer reviewed Peer reviewed
Direct linkDirect link
Bolfarine, Heleno; Bazan, Jorge Luis – Journal of Educational and Behavioral Statistics, 2010
A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric…
Descriptors: Markov Processes, Item Response Theory, Bayesian Statistics, Monte Carlo Methods
de la Torre, Jimmy; Patz, Richard J. – 2001
This paper seeks to extend the application of Markov chain Monte Carlo (MCMC) methods in item response theory (IRT) to include the estimation of equating relationships along with the estimation of test item parameters. A method is proposed that incorporates estimation of the equating relationship in the item calibration phase. Item parameters from…
Descriptors: Achievement Tests, Bayesian Statistics, Equated Scores, Estimation (Mathematics)