Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 16 |
Descriptor
Mathematical Models | 180 |
Monte Carlo Methods | 180 |
Equations (Mathematics) | 52 |
Computer Simulation | 47 |
Estimation (Mathematics) | 45 |
Sample Size | 38 |
Comparative Analysis | 35 |
Statistical Analysis | 29 |
Maximum Likelihood Statistics | 28 |
Error of Measurement | 26 |
Simulation | 26 |
More ▼ |
Source
Author
Harwell, Michael R. | 4 |
Stone, Clement A. | 4 |
Barcikowski, Robert S. | 3 |
Brown, R. L. | 3 |
Donoghue, John R. | 3 |
Fan, Xitao | 3 |
Kromrey, Jeffrey D. | 3 |
Nandakumar, Ratna | 3 |
Ackerman, Terry A. | 2 |
Allen, Nancy L. | 2 |
Chou, Tungshan | 2 |
More ▼ |
Publication Type
Education Level
Higher Education | 5 |
Postsecondary Education | 3 |
Elementary Secondary Education | 1 |
High Schools | 1 |
Secondary Education | 1 |
Audience
Researchers | 8 |
Practitioners | 5 |
Teachers | 3 |
Location
India | 2 |
California | 1 |
China | 1 |
Kansas | 1 |
Oregon | 1 |
United States | 1 |
Laws, Policies, & Programs
Assessments and Surveys
ACT Assessment | 1 |
What Works Clearinghouse Rating
Tugay Kaçak; Abdullah Faruk Kiliç – International Journal of Assessment Tools in Education, 2025
Researchers continue to choose PCA in scale development and adaptation studies because it is the default setting and overestimates measurement quality. When PCA is utilized in investigations, the explained variance and factor loadings can be exaggerated. PCA, in contrast to the models given in the literature, should be investigated in…
Descriptors: Factor Analysis, Monte Carlo Methods, Mathematical Models, Sample Size
Mohammed, M. A.; Ibrahim, A. I. N.; Siri, Z.; Noor, N. F. M. – Sociological Methods & Research, 2019
In this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to…
Descriptors: Monte Carlo Methods, Calculus, Sampling, Simulation
Lockwood, J. R.; Castellano, Katherine E.; Shear, Benjamin R. – Journal of Educational and Behavioral Statistics, 2018
This article proposes a flexible extension of the Fay--Herriot model for making inferences from coarsened, group-level achievement data, for example, school-level data consisting of numbers of students falling into various ordinal performance categories. The model builds on the heteroskedastic ordered probit (HETOP) framework advocated by Reardon,…
Descriptors: Bayesian Statistics, Mathematical Models, Statistical Inference, Computation
Luo, Yong; Jiao, Hong – Educational and Psychological Measurement, 2018
Stan is a new Bayesian statistical software program that implements the powerful and efficient Hamiltonian Monte Carlo (HMC) algorithm. To date there is not a source that systematically provides Stan code for various item response theory (IRT) models. This article provides Stan code for three representative IRT models, including the…
Descriptors: Bayesian Statistics, Item Response Theory, Probability, Computer Software
Larripa, Kamila; Mazzag, Borbala – PRIMUS, 2019
This article proposes that in addition to training teams of students to succeed in the Mathematical Contest in Modeling, the contest and the preparation for competition can be successfully used as a framework to teach an auxiliary skill set to undergraduate STEM majors through workshop-style modules. The skills emphasized are collaboration across…
Descriptors: Mathematical Models, Competition, STEM Education, Undergraduate Students
Lin, Tony; Erfan, Sasan – New England Journal of Higher Education, 2016
Mathematical modeling is an open-ended research subject where no definite answers exist for any problem. Math modeling enables thinking outside the box to connect different fields of studies together including statistics, algebra, calculus, matrices, programming and scientific writing. As an integral part of society, it is the foundation for many…
Descriptors: Mathematical Models, Mathematics, High School Students, Secondary School Mathematics
Dorie, Vincent; Harada, Masataka; Carnegie, Nicole Bohme; Hill, Jennifer – Grantee Submission, 2016
When estimating causal effects, unmeasured confounding and model misspecification are both potential sources of bias. We propose a method to simultaneously address both issues in the form of a semi-parametric sensitivity analysis. In particular, our approach incorporates Bayesian Additive Regression Trees into a two-parameter sensitivity analysis…
Descriptors: Bayesian Statistics, Mathematical Models, Causal Models, Statistical Bias
Bailey, Gary L.; Steed, Ronald C. – International Journal for the Scholarship of Teaching and Learning, 2012
Kulick and Wright concluded, based on theoretical mathematical simulations of hypothetical student exam scores, that assigning exam grades to students based on the relative position of their exam performance scores within a normal curve may be unfair, given the role that randomness plays in any given student's performance on any given exam.…
Descriptors: Grading, Scores, Mathematical Models, Student Evaluation
Devlin, J. F.; Brookfield, A.; Huang, B.; Schillig, P. C. – Journal of Geoscience Education, 2012
The Domenico solution is a heuristic simplification of a solution to the transport equation. Although there is a growing consensus that the Domenico solution is undesirable for use in professional and research applications due to departures from exact solutions under certain conditions, it behaves well under conditions suitable for instruction.…
Descriptors: Equations (Mathematics), Heuristics, Geology, Science Instruction
Morio, Jerome – European Journal of Physics, 2011
Sensitivity analysis is the study of how the different input variations of a mathematical model influence the variability of its output. In this paper, we review the principle of global and local sensitivity analyses of a complex black-box system. A simulated case of application is given at the end of this paper to compare both approaches.…
Descriptors: Mathematical Models, Models, Teaching Methods, Comparative Analysis
Dong, Nianbo; Lipsey, Mark – Society for Research on Educational Effectiveness, 2010
This study uses simulation techniques to examine the statistical power of the group- randomized design and the matched-pair (MP) randomized block design under various parameter combinations. Both nearest neighbor matching and random matching are used for the MP design. The power of each design for any parameter combination was calculated from…
Descriptors: Simulation, Statistical Analysis, Cluster Grouping, Mathematical Models
Ramon Barrada, Juan; Veldkamp, Bernard P.; Olea, Julio – Applied Psychological Measurement, 2009
Computerized adaptive testing is subject to security problems, as the item bank content remains operative over long periods and administration time is flexible for examinees. Spreading the content of a part of the item bank could lead to an overestimation of the examinees' trait level. The most common way of reducing this risk is to impose a…
Descriptors: Item Banks, Adaptive Testing, Item Analysis, Psychometrics
Kulick, George; Wright, Ronald – International Journal for the Scholarship of Teaching and Learning, 2008
Grading on the curve is a common practice in higher education. While there are many critics of the practice it still finds wide spread acceptance particularly in science classes. Advocates believe that in large classes student ability is likely to be normally distributed. If test scores are also normally distributed instructors and students tend…
Descriptors: Grading, Higher Education, Scores, Outcomes of Education
Turton, Roger W. – Mathematics Teacher, 2007
This article describes several methods from discrete mathematics used to simulate and solve an interesting problem occurring at a holiday gift exchange. What is the probability that two people will select each other's names in a random drawing, and how does this result vary with the total number of participants? (Contains 5 figures.)
Descriptors: Probability, Algebra, Problem Solving, Monte Carlo Methods

Mullen, Kenneth; Ennis, Daniel M. – Psychometrika, 1987
Multivariate models for the triangular and duo-trio methods are described, and theoretical methods are compared to a Monte Carlo simulation. Implications are discussed for a new theory of multidimensional scaling which challenges the traditional assumption that proximity measures and perceptual distances are monotonically related. (Author/GDC)
Descriptors: Mathematical Models, Monte Carlo Methods, Multidimensional Scaling