NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 41 results Save | Export
Peer reviewed Peer reviewed
DeSarbo, Wayne S.; And Others – Psychometrika, 1994
This paper presents a new procedure called TREEFAM for estimating ultrametric tree structures from proximity data confounded by differential stimulus familiarity. The objective is to quantitatively filter out effects of stimulus unfamiliarity. Superiority of TREEFAM over conventional methods is illustrated through a Monte Carlo study and an…
Descriptors: Consumer Economics, Estimation (Mathematics), Maximum Likelihood Statistics, Monte Carlo Methods
Muthen, Bengt – 1994
This paper investigates methods that avoid using multiple groups to represent the missing data patterns in covariance structure modeling, attempting instead to do a single-group analysis where the only action the analyst has to take is to indicate that data is missing. A new covariance structure approach developed by B. Muthen and G. Arminger is…
Descriptors: Bayesian Statistics, Estimation (Mathematics), Maximum Likelihood Statistics, Monte Carlo Methods
Peer reviewed Peer reviewed
Wolins, Leroy – Educational and Psychological Measurement, 1995
From 105 samples of 300 observations each and 87 samples with 3,000 observations each, constrained factor analyses of 96 normally distributed variables in a three-stage hierarchical structure were computed by maximum likelihood and unweighted least squares (ULS). ULS took less time and computer resources and led to better estimates. (SLD)
Descriptors: Estimation (Mathematics), Factor Analysis, Least Squares Statistics, Maximum Likelihood Statistics
Akkermans, Wies M. W. – 1994
In order to obtain conditional maximum likelihood estimates, the so-called conditioning estimates have to be calculated. In this paper a method is examined that does not calculate these constants exactly, but approximates them using Monte Carlo Markov Chains. As an example, the method is applied to the conditional estimation of both item and…
Descriptors: Estimation (Mathematics), Foreign Countries, Markov Processes, Maximum Likelihood Statistics
Kim, Seock-Ho; Cohen, Allan S. – 1998
The accuracy of the Markov Chain Monte Carlo (MCMC) procedure Gibbs sampling was considered for estimation of item parameters of the two-parameter logistic model. Data for the Law School Admission Test (LSAT) Section 6 were analyzed to illustrate the MCMC procedure. In addition, simulated data sets were analyzed using the MCMC, marginal Bayesian…
Descriptors: Bayesian Statistics, Estimation (Mathematics), Higher Education, Markov Processes
Peer reviewed Peer reviewed
Young, Martin R.; DeSarbo, Wayne S. – Psychometrika, 1995
A new parametric maximum likelihood procedure is proposed for estimating ultrametric trees for the analysis of conditional rank order proximity data. Technical aspects of the model and the estimation algorithm are discussed, and Monte Carlo results illustrate its application. A consumer psychology application is also examined. (SLD)
Descriptors: Algorithms, Consumer Economics, Estimation (Mathematics), Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Sanchez-Meca, Julio; Marin-Martinez, Fulgencio – Educational and Psychological Measurement, 2001
Assessed five procedures for estimating a common risk difference in a set of independent 2 x 2 tables through Monte Carlo simulation in terms of bias, efficiency, confidence level adjustment, and statistical power. The maximum likelihood estimator showed best performance, followed closely by the Cochran (W. Cochran, 1954) and Mantel-Haenszel (N.…
Descriptors: Estimation (Mathematics), Maximum Likelihood Statistics, Meta Analysis, Monte Carlo Methods
Peer reviewed Peer reviewed
Jackson, Dennis L. – Structural Equation Modeling, 2001
Investigated the assumption that determining an adequate sample size in structural equation modeling can be aided by considering the number of parameters to be estimated. Findings from maximum likelihood confirmatory factor analysis support previous research on the effect of sample size, measured variable reliability, and the number of measured…
Descriptors: Estimation (Mathematics), Maximum Likelihood Statistics, Monte Carlo Methods, Reliability
Peer reviewed Peer reviewed
Kim, Seock-Ho – Applied Psychological Measurement, 2001
Examined the accuracy of the Gibbs sampling Markov chain Monte Carlo procedure for estimating item and person (theta) parameters in the one-parameter logistic model. Analyzed four empirical datasets using the Gibbs sampling, conditional maximum likelihood, marginal maximum likelihood, and joint maximum likelihood methods. Discusses the conditions…
Descriptors: Ability, Estimation (Mathematics), Item Response Theory, Markov Processes
De Ayala, R. J.; And Others – 1995
Expected a posteriori has a number of advantages over maximum likelihood estimation or maximum a posteriori (MAP) estimation methods. These include ability estimates (thetas) for all response patterns, less regression towards the mean than MAP ability estimates, and a lower average squared error. R. D. Bock and R. J. Mislevy (1982) state that the…
Descriptors: Adaptive Testing, Bayesian Statistics, Error of Measurement, Estimation (Mathematics)
Peer reviewed Peer reviewed
Holland, Paul W. – Psychometrika, 1990
The Dutch Identity is presented as a useful tool for expressing the basic equations of item response models that relate the manifest probabilities to the item response functions and the latent trait distribution. Ways in which the identity may be exploited are suggested and illustrated. (SLD)
Descriptors: Equations (Mathematics), Estimation (Mathematics), Item Response Theory, Mathematical Models
Peer reviewed Peer reviewed
Kano, Yutaka – Psychometrika, 1990
Based on the usual factor analysis model, this paper investigates the relationship between improper solutions and the number of factors. The properties of the noniterative estimation method of M. Ihara and Y. Kano in exploratory factor analysis are also discussed. The estimators were compared in a Monte Carlo experiment. (TJH)
Descriptors: Comparative Analysis, Estimation (Mathematics), Factor Analysis, Mathematical Models
Peer reviewed Peer reviewed
Stone, Clement A.; Sobel, Michael E. – Psychometrika, 1990
Using Monte Carlo methods, the applicability of large sample theory to maximum likelihood estimates of total indirect effects in sample sizes of 50, 100, 200, 400, and 800 was studied. Samples of at least 200 and 400 are required for the recursive and nonrecursive models, respectively, that were assessed. (TJH)
Descriptors: Estimation (Mathematics), Mathematical Models, Maximum Likelihood Statistics, Monte Carlo Methods
Peer reviewed Peer reviewed
Bentler, Peter M.; Yuan, Ke-Hai – Multivariate Behavioral Research, 1999
Studied the small sample behavior of several test statistics based on the maximum-likelihood estimator but designed to perform better with nonnormal data. Monte Carlo results indicate the satisfactory performance of the "F" statistic recently proposed by K. Yuan and P. Bentler (1997). (SLD)
Descriptors: Estimation (Mathematics), Maximum Likelihood Statistics, Monte Carlo Methods, Sample Size
Peer reviewed Peer reviewed
Storms, Gert – Psychometrika, 1995
A Monte Carlo study was conducted to investigate the robustness of the assumed error distribution in maximum likelihood estimation models for multidimensional scaling. Results show that violations of the assumed error distribution have virtually no effect on the estimated distance parameters. (SLD)
Descriptors: Error of Measurement, Estimation (Mathematics), Maximum Likelihood Statistics, Monte Carlo Methods
Previous Page | Next Page ยป
Pages: 1  |  2  |  3