NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 30 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Elijah St. Germain – Journal of Chemical Education, 2025
Many approaches to teaching Newman projections and conformational manipulation rely on lecturing using only two-dimensional representations. While molecular models are recognized as useful learning tools, students are often left to figure out how to use them during the initial learning process. The availability of basic online molecular models…
Descriptors: Organic Chemistry, Science Instruction, Competency Based Education, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Lam, Wendy W. T.; Siu, Shirley W. I. – Biochemistry and Molecular Biology Education, 2017
Viewing and manipulating three-dimensional (3D) structures in molecular graphics software are essential tasks for researchers and students to understand the functions of molecules. Currently, the way to manipulate a 3D molecular object is mainly based on mouse-and-keyboard control that is usually difficult and tedious to learn. While gesture-based…
Descriptors: Handheld Devices, Visual Aids, Molecular Structure, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H. – Journal of Chemical Education, 2016
Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…
Descriptors: Chemistry, Computer Graphics, Models, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Lundquist, Karl; Herndon, Conner; Harty, Tyson H.; Gumbart, James C. – Biochemistry and Molecular Biology Education, 2016
It is often difficult for students to develop an intuition about molecular processes, which occur in a realm far different from day-to-day life. For example, thermal fluctuations take on hurricane-like proportions at the molecular scale. Students need a way to visualize realistic depictions of molecular processes to appreciate them. To this end,…
Descriptors: High School Students, Classroom Techniques, Molecular Structure, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Smiar, Karen; Mendez, J. D. – Journal of Chemical Education, 2016
Molecular model kits have been used in chemistry classrooms for decades but have seen very little recent innovation. Using 3D printing, three sets of physical models were created for a first semester, introductory chemistry course. Students manipulated these interactive models during class activities as a supplement to existing teaching tools for…
Descriptors: Molecular Structure, Computer Graphics, Printed Materials, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Glasser, Leslie – Journal of Chemical Education, 2014
We introduce various methods which are used to depict three-dimensional objects on two-dimensional surfaces. Many of these are artistic and not conducive to exact interpretation. Instead, the scientific and engineering practices and mathematics of orthographic projection are introduced, and illustrated in an accompanying interactive Excel…
Descriptors: Science Education, Illustrations, Computer Graphics, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Teplukhin, Alexander; Babikov, Dmitri – Journal of Chemical Education, 2015
In our three-dimensional world, one can plot, see, and comprehend a function of two variables at most, V(x,y). One cannot plot a function of three or more variables. For this reason, visualization of the potential energy function in its full dimensionality is impossible even for the smallest polyatomic molecules, such as triatomics. This creates…
Descriptors: Science Instruction, Visualization, Energy, College Science
Davenport, Jodi; Silberglitt, Matt; Olson, Arthur – Grantee Submission, 2013
How do viruses self-assemble? Why do DNA bases pair the way they do? What factors determine whether strands of proteins fold into sheets or helices? Why does handedness matter? A deep understanding of core issues in biology requires students to understand both complex spatial structures of molecules and the interactions involved in dynamic…
Descriptors: Molecular Structure, Models, Molecular Biology, Printing
Peer reviewed Peer reviewed
Direct linkDirect link
Meyer, Scott C. – Journal of Chemical Education, 2015
An upper-division undergraduate laboratory experiment is described that explores the structure/function relationship of protein domains, namely leucine zippers, through a molecular graphics computer program and physical models fabricated by 3D printing. By generating solvent accessible surfaces and color-coding hydrophobic, basic, and acidic amino…
Descriptors: College Science, Undergraduate Study, Science Laboratories, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Casas, Lluís; Estop, Euge`nia – Journal of Chemical Education, 2015
Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…
Descriptors: Geometry, Models, Printing, Physical Sciences
Peer reviewed Peer reviewed
Direct linkDirect link
Magalha~es, Alexandre L. – Journal of Chemical Education, 2014
The advantages of Gaussian-type orbitals (GTO) over Slater-type orbitals (STO) in quantum chemistry calculations are clarified here by means of a holistic approach. The popular Microsoft Office Excel program was used to create an interactive application with which students are able to explore the features of GTO, including automatic calculations…
Descriptors: Holistic Approach, Quantum Mechanics, Chemistry, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Jennings, Ashley S. – Journal of Chemical Education, 2010
To solve the challenge of learning VSEPR molecules in three dimensions, a high school student leverages her passion for 3D computer animation to develop a creative solution. This article outlines the process and story behind the creation of her unique video. (Contains 1 figure.)
Descriptors: Animation, Computer Graphics, High School Students, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Luealamai, Sutha; Panijpan, Bhinyo – Simulation & Gaming, 2012
The authors have developed a computer-based learning module on the unit cell of various types of crystal. The module has two components: the virtual unit cell (VUC) part and the subsequent unit cell hunter part. The VUC is a virtual reality simulation for students to actively arrive at the unit cell from exploring, from a broad view, the crystal…
Descriptors: Foreign Countries, Learning Modules, Science Instruction, Pilot Projects
Peer reviewed Peer reviewed
Weber, Jacques; And Others – Educational Media International, 1992
Explains molecular graphics, i.e., the application of computer graphics techniques to investigate molecular structure, function, and interaction. Structural models and molecular surfaces are discussed, and a theoretical model that can be used for the evaluation of intermolecular interaction energies for organometallics is described. (45…
Descriptors: Chemistry, Computer Graphics, Models, Molecular Structure
Peer reviewed Peer reviewed
Fox, Jeffrey L. – Chemical and Engineering News, 1979
Explains how using computers to generate images, to gather high-speed data, and to make better models has greatly improved x-ray crystallography results. (Author/GA)
Descriptors: Biochemistry, Chemical Bonding, Chemistry, Computer Graphics
Previous Page | Next Page »
Pages: 1  |  2