NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 106 to 120 of 318 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chuan Cai; Adam Fleischhacker – Journal of Educational Data Mining, 2024
We propose a novel approach to address the issue of college student attrition by developing a hybrid model that combines a structural neural network with a piecewise exponential model. This hybrid model not only shows the potential to robustly identify students who are at high risk of dropout, but also provides insights into which factors are most…
Descriptors: College Students, Student Attrition, Dropouts, Potential Dropouts
Peer reviewed Peer reviewed
Direct linkDirect link
Line Have Musaeus; Deborah Tatar; Peter Musaeus – Journal of Biological Education, 2024
Computational modelling is widely used in biological science. Therefore, biology students need to learn computational modelling. However, there is a lack of evidence about how to teach computational modelling in biology and what the effects are on student learning. The purpose of this intervention-control study was to investigate how knowledge in…
Descriptors: Computation, Models, High School Students, Biology
Peer reviewed Peer reviewed
Direct linkDirect link
Kelli A. Bird; Benjamin L. Castleman; Yifeng Song – Journal of Policy Analysis and Management, 2025
Predictive analytics are increasingly pervasive in higher education. However, algorithmic bias has the potential to reinforce racial inequities in postsecondary success. We provide a comprehensive and translational investigation of algorithmic bias in two separate prediction models--one predicting course completion, the second predicting degree…
Descriptors: Algorithms, Technology Uses in Education, Bias, Racism
Peer reviewed Peer reviewed
Direct linkDirect link
Yuguo Ke; Xiaozhen Zhou – SAGE Open, 2025
Focusing efficiently on potential weaknesses in the validity argument of writing assessments--such as writing subjectivity, content coverage, criteria vagueness, and raters' incompetence--has been shown to positively enhance teachers' overall writing assessment competence (AC). In this study, we propose a computational bootstrapping model of…
Descriptors: Writing Evaluation, Persuasive Discourse, Validity, Writing Teachers
Peer reviewed Peer reviewed
Direct linkDirect link
Shu, Tian; Luo, Guanzhong; Luo, Zhaosheng; Yu, Xiaofeng; Guo, Xiaojun; Li, Yujun – Journal of Educational and Behavioral Statistics, 2023
Cognitive diagnosis models (CDMs) are the statistical framework for cognitive diagnostic assessment in education and psychology. They generally assume that subjects' latent attributes are dichotomous--mastery or nonmastery, which seems quite deterministic. As an alternative to dichotomous attribute mastery, attention is drawn to the use of a…
Descriptors: Cognitive Measurement, Models, Diagnostic Tests, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Man Kit Lee, Stephen; Liu, Hey Wing; Tong, Shelley Xiuli – Scientific Studies of Reading, 2023
Purpose: Dyslexia is characterized by its diverse causes and heterogeneous manifestations. Chinese children with dyslexia exhibit orthographic, phonological, and semantic deficits across character and radical levels when writing. However, whether character dictation can be used to distinguish children with dyslexia from their typically developing…
Descriptors: Foreign Countries, Dyslexia, Disability Identification, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Zexuan Pan; Maria Cutumisu – AERA Online Paper Repository, 2023
Computational thinking (CT) is a fundamental ability for learners in today's society. Although CT assessments and interventions have been studied widely, little is known about CT predictions. This study predicted students' CT achievement in the ICILS 2018 using five machine learning models. These models were trained on the data from five European…
Descriptors: Computation, Thinking Skills, Artificial Intelligence, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Yanhui Wang – International Journal of Web-Based Learning and Teaching Technologies, 2024
In recent years, China has accelerated the process of internationalization and made more and more achievements in transnational communication and cooperation. English learning is very important for contemporary college students. And English reading is an important means to acquire English language knowledge, understand external information and…
Descriptors: Algorithms, College Students, English (Second Language), Reading Ability
Peer reviewed Peer reviewed
Direct linkDirect link
Hua Ma; Wen Zhao; Yuqi Tang; Peiji Huang; Haibin Zhu; Wensheng Tang; Keqin Li – IEEE Transactions on Learning Technologies, 2024
To prevent students from learning risks and improve teachers' teaching quality, it is of great significance to provide accurate early warning of learning performance to students by analyzing their interactions through an e-learning system. In existing research, the correlations between learning risks and students' changing cognitive abilities or…
Descriptors: College Students, Learning Analytics, Learning Management Systems, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Xi Jin – International Journal of Web-Based Learning and Teaching Technologies, 2024
How to develop a teaching management system to improve the teaching efficiency of art courses has become an important challenge at present. This article takes university art teaching courses as the research object, uses dynamic L-M algorithm to optimize a large number of parameters, proposes an improved neural networks evaluation model,…
Descriptors: Instructional Effectiveness, Art Education, Barriers, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Nathalie Rzepka; Linda Fernsel; Hans-Georg Müller; Katharina Simbeck; Niels Pinkwart – Computer-Based Learning in Context, 2023
Algorithms and machine learning models are being used more frequently in educational settings, but there are concerns that they may discriminate against certain groups. While there is some research on algorithmic fairness, there are two main issues with the current research. Firstly, it often focuses on gender and race and ignores other groups.…
Descriptors: Algorithms, Artificial Intelligence, Models, Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Ujjwal Biswas; Samit Bhattacharya – Education and Information Technologies, 2024
The application of machine learning (ML) has grown and is now used to enhance learning outcomes. In blended classroom settings, ML, emerging smartphones and wearable technologies are commonly used to improve teaching and learning. The combination of these advanced technologies and ML plays a crucial role in enhancing real-time feedback quality.…
Descriptors: Artificial Intelligence, Blended Learning, Flipped Classroom, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Tanjea Ane; Tabatshum Nepa – Research on Education and Media, 2024
Precision education derives teaching and learning opportunities by customizing predictive rules in educational methods. Innovative educational research faces new challenges and affords state-of-the-art methods to trace knowledge between the teaching and learning ecosystem. Individual intelligence can only be captured through knowledge level…
Descriptors: Artificial Intelligence, Prediction, Models, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Camille Lund – Mathematics Teacher: Learning and Teaching PK-12, 2024
Every educator knows the sinking feeling of a lesson gone wrong. As teachers look around the room and realize that many of their students are just not getting it, they often feel like failures. However, the struggle students experience as they persevere through high-quality challenging tasks is not a sign of failure, but rather a key aspect of…
Descriptors: Mathematics Instruction, Difficulty Level, Mathematics Skills, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Hongyu Xie; He Xiao; Yu Hao – International Journal of Web-Based Learning and Teaching Technologies, 2024
Modern e-learning system is a representative service form in innovative service industry. This paper designs a personalized service domain system, optimizes various parameters and can be applied to different education quality evaluation, and proposes a decision tree recommendation algorithm. Information gain is carried out through many existing…
Descriptors: Artificial Intelligence, Electronic Learning, Individualized Instruction, Models
Pages: 1  |  ...  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  12  |  ...  |  22