Publication Date
| In 2026 | 0 |
| Since 2025 | 4 |
| Since 2022 (last 5 years) | 82 |
| Since 2017 (last 10 years) | 215 |
| Since 2007 (last 20 years) | 512 |
Descriptor
| Bayesian Statistics | 606 |
| Models | 606 |
| Computation | 131 |
| Item Response Theory | 120 |
| Probability | 120 |
| Simulation | 110 |
| Comparative Analysis | 101 |
| Prediction | 96 |
| Statistical Analysis | 94 |
| Monte Carlo Methods | 91 |
| Markov Processes | 80 |
| More ▼ | |
Source
Author
| Tenenbaum, Joshua B. | 10 |
| Griffiths, Thomas L. | 9 |
| Lee, Michael D. | 8 |
| Levy, Roy | 7 |
| Mislevy, Robert J. | 7 |
| Sinharay, Sandip | 7 |
| Wagenmakers, Eric-Jan | 7 |
| Zhang, Zhiyong | 6 |
| Zhiyong Zhang | 6 |
| Almond, Russell G. | 5 |
| Huang, Hung-Yu | 5 |
| More ▼ | |
Publication Type
Education Level
Audience
| Researchers | 11 |
| Administrators | 1 |
| Practitioners | 1 |
| Students | 1 |
| Teachers | 1 |
Location
| Massachusetts | 5 |
| Pennsylvania | 5 |
| Spain | 5 |
| Australia | 4 |
| Brazil | 4 |
| Netherlands | 4 |
| Taiwan | 4 |
| Europe | 3 |
| Germany | 3 |
| North Carolina | 3 |
| California | 2 |
| More ▼ | |
Laws, Policies, & Programs
| Elementary and Secondary… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Efthimiou, Orestis; White, Ian R. – Research Synthesis Methods, 2020
Standard models for network meta-analysis simultaneously estimate multiple relative treatment effects. In practice, after estimation, these multiple estimates usually pass through a formal or informal selection procedure, eg, when researchers draw conclusions about the effects of the best performing treatment in the network. In this paper, we…
Descriptors: Models, Meta Analysis, Network Analysis, Simulation
Lozano, José H.; Revuelta, Javier – Educational and Psychological Measurement, 2023
The present paper introduces a general multidimensional model to measure individual differences in learning within a single administration of a test. Learning is assumed to result from practicing the operations involved in solving the items. The model accounts for the possibility that the ability to learn may manifest differently for correct and…
Descriptors: Bayesian Statistics, Learning Processes, Test Items, Item Analysis
T. S. Kutaka; P. Chernyavskiy; J. Sarama; D. H. Clements – Grantee Submission, 2023
Investigators often rely on the proportion of correct responses in an assessment when describing the impact of early mathematics interventions on child outcomes. Here, we propose a shift in focus to the relative sophistication of problem-solving strategies and offer methodological guidance to researchers interested in working with strategies. We…
Descriptors: Learning Trajectories, Problem Solving, Mathematics Instruction, Early Intervention
Hall, Garret J.; Kaplan, David; Albers, Craig A. – Learning Disabilities Research & Practice, 2022
Bayesian latent change score modeling (LCSM) was used to compare models of triannual (fall, winter, spring) change on elementary math computation and concepts/applications curriculum-based measures. Data were collected from elementary students in Grades 2-5, approximately 700 to 850 students in each grade (47%-54% female; 78%-79% White, 10%-11%…
Descriptors: Learning Disabilities, Students with Disabilities, Elementary School Students, Mathematics Skills
Sarsa, Sami; Leinonen, Juho; Hellas, Arto – Journal of Educational Data Mining, 2022
New knowledge tracing models are continuously being proposed, even at a pace where state-of-the-art models cannot be compared with each other at the time of publication. This leads to a situation where ranking models is hard, and the underlying reasons of the models' performance -- be it architectural choices, hyperparameter tuning, performance…
Descriptors: Learning Processes, Artificial Intelligence, Intelligent Tutoring Systems, Memory
Logacev, Pavel – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2023
A number of studies have found evidence for the so-called "ambiguity advantage," that is, faster processing of ambiguous sentences compared with unambiguous counterparts. While a number of proposals regarding the mechanism underlying this phenomenon have been made, the empirical evidence so far is far from unequivocal. It is compatible…
Descriptors: Phrase Structure, Accuracy, Ambiguity (Semantics), Sentences
Mangino, Anthony A.; Smith, Kendall A.; Finch, W. Holmes; Hernández-Finch, Maria E. – Measurement and Evaluation in Counseling and Development, 2022
A number of machine learning methods can be employed in the prediction of suicide attempts. However, many models do not predict new cases well in cases with unbalanced data. The present study improved prediction of suicide attempts via the use of a generative adversarial network.
Descriptors: Prediction, Suicide, Artificial Intelligence, Networks
Uglanova, Irina – Practical Assessment, Research & Evaluation, 2021
There is increased use of Bayesian networks (BN) in educational assessment. In psychometrics, BN serves as a measurement model with high flexibility, suitable to model educational assessment data with a complex structure. BN is a novel psychometric approach and not all aspects of its application are well-known. The article aims to provide the…
Descriptors: Bayesian Statistics, Educational Assessment, Psychometrics, Criticism
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Abu-Ghazalah, Rashid M.; Dubins, David N.; Poon, Gregory M. K. – Applied Measurement in Education, 2023
Multiple choice results are inherently probabilistic outcomes, as correct responses reflect a combination of knowledge and guessing, while incorrect responses additionally reflect blunder, a confidently committed mistake. To objectively resolve knowledge from responses in an MC test structure, we evaluated probabilistic models that explicitly…
Descriptors: Guessing (Tests), Multiple Choice Tests, Probability, Models
Albert, Isabelle; Makowski, David – Research Synthesis Methods, 2019
The mixed treatment comparison (MTC) method has been proposed to combine results across trials comparing several treatments. MTC allows coherent judgments on which of the treatments is the most effective. It produces estimates of the relative effects of each treatment compared with every other treatment by pooling direct and indirect evidence. In…
Descriptors: Research Methodology, Agriculture, Agricultural Production, Comparative Analysis
Zhang, Xue; Tao, Jian; Wang, Chun; Shi, Ning-Zhong – Journal of Educational Measurement, 2019
Model selection is important in any statistical analysis, and the primary goal is to find the preferred (or most parsimonious) model, based on certain criteria, from a set of candidate models given data. Several recent publications have employed the deviance information criterion (DIC) to do model selection among different forms of multilevel item…
Descriptors: Bayesian Statistics, Item Response Theory, Measurement, Models
Hinterecker, Thomas; Knauff, Markus; Johnson-Laird, P. N. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2019
Individuals draw conclusions about possibilities from assertions that make no explicit reference to them. The model theory postulates that assertions such as disjunctions refer to possibilities. Hence, a disjunction of the sort, "A or B or both," where "A" and "B" are sensible clauses, yields mental models of an…
Descriptors: Logical Thinking, Abstract Reasoning, Inferences, Probability
Taylor, John M. – Practical Assessment, Research & Evaluation, 2019
Although frequentist estimators can effectively fit ordinal confirmatory factor analysis (CFA) models, their assumptions are difficult to establish and estimation problems may prohibit their use at times. Consequently, researchers may want to also look to Bayesian analysis to fit their ordinal models. Bayesian methods offer researchers an…
Descriptors: Bayesian Statistics, Factor Analysis, Least Squares Statistics, Error of Measurement
Banerjee, Abhijit; Breza, Emily; Chandrasekhar, Arun G.; Mobius, Markus – National Bureau of Economic Research, 2019
The DeGroot model has emerged as a credible alternative to the standard Bayesian model for studying learning on networks, offering a natural way to model naive learning in a complex setting. One unattractive aspect of this model is the assumption that the process starts with every node in the network having a signal. We study a natural extension…
Descriptors: Alternative Assessment, Bayesian Statistics, Incidental Learning, Networks

Peer reviewed
Direct link
