NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Students1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 16 to 30 of 194 results Save | Export
Peer reviewed Peer reviewed
Parian Haghighat; Denisa Gandara; Lulu Kang; Hadis Anahideh – Grantee Submission, 2024
Predictive analytics is widely used in various domains, including education, to inform decision-making and improve outcomes. However, many predictive models are proprietary and inaccessible for evaluation or modification by researchers and practitioners, limiting their accountability and ethical design. Moreover, predictive models are often opaque…
Descriptors: Prediction, Learning Analytics, Multivariate Analysis, Regression (Statistics)
Yingbo Ma – ProQuest LLC, 2023
Collaborative learning provides learners with significant opportunities to collaborate on solving problems and creating better products. There has been a growing utilization of adaptive and intelligent systems to support productive learning while promoting collaborative practices. One of the core capabilities of these adaptive and intelligent…
Descriptors: Cooperative Learning, Models, Interaction, Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Irene Benedetto; Moreno La Quatra; Luca Cagliero; Lorenzo Canale; Laura Farinetti – Education and Information Technologies, 2024
Modern educational technology systems allow learners to access large amounts of learning materials such as educational videos, learning notes, and teaching books. Automated summarization techniques simplify the access and exploration of complex data collections by producing synthetic versions of the original content. This paper addresses the…
Descriptors: Learning Analytics, Documentation, Blended Learning, Video Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Allyson Skene; Laura Winer; Erika Kustra – International Journal for Academic Development, 2024
This article explores potential uses, misuses, beneficiaries, and tensions of learning analytics in higher education. While those promoting and using learning analytics generally agree that ethical practice is imperative, and student privacy and rights are important, navigating the complex maze of ethical dilemmas can be challenging, particularly…
Descriptors: Learning Analytics, Higher Education, Ethics, Privacy
Zixuan Ke – ProQuest LLC, 2024
The essence of human intelligence lies in its ability to learn continuously, accumulating past knowledge to aid in future learning and problem-solving endeavors. In contrast, the current machine learning paradigm often operates in isolation, lacking the capacity for continual learning and adaptation. This deficiency becomes apparent in the face of…
Descriptors: Computational Linguistics, Computer Software, Barriers, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Smithers, Laura – Learning, Media and Technology, 2023
This article examines the work of predictive analytics in shaping the social worlds in which they thrive, and in particular the world of the first year of Great State University's student success initiative. Specifically, this article investigates the following research paradox: predictive analytics, as driven by a logic premised on predicting the…
Descriptors: Prediction, Learning Analytics, Academic Achievement, College Students
Peer reviewed Peer reviewed
Direct linkDirect link
Vatsalan, Dinusha; Rakotoarivelo, Thierry; Bhaskar, Raghav; Tyler, Paul; Ladjal, Djazia – British Journal of Educational Technology, 2022
With Big Data revolution, the education sector is being reshaped. The current data-driven education system provides many opportunities to utilize the enormous amount of collected data about students' activities and performance for personalized education, adapting teaching methods, and decision making. On the other hand, such benefits come at a…
Descriptors: Privacy, Risk, Data, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Denisa Gandara; Hadis Anahideh – Society for Research on Educational Effectiveness, 2024
Background/Context: Predictive analytics has emerged as an indispensable tool in the education sector, offering insights that can improve student outcomes and inform more equitable policies (Friedler et al., 2019; Kleinberg et al., 2018). However, the widespread adoption of predictive models is hindered by several challenges, including the lack of…
Descriptors: Prediction, Learning Analytics, Ethics, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Xia, Xiaona; Qi, Wanxue – International Journal of Educational Technology in Higher Education, 2023
The temporal sequence of learning behavior is multidimensional and continuous in MOOCs. On the one hand, it supports personalized learning methods, achieves flexible time and space. On the other hand, it also makes MOOCs produce a large number of dropouts and incomplete learning behaviors. Dropout prediction and decision feedback have become an…
Descriptors: MOOCs, Dropouts, Prediction, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Xia, Xiaona – SAGE Open, 2022
Mining problems and exploring rules are the key problems in the learning process, and also the difficulties in education big data. Therefore, taking learning behavior as the research objective, this study demonstrates the collaborative training method of multi view learning interaction process driven by big data, so as to realize the tendency…
Descriptors: Learning Analytics, Learning Processes, Cooperative Learning, Training Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Yuang Wei; Bo Jiang – IEEE Transactions on Learning Technologies, 2024
Understanding student cognitive states is essential for assessing human learning. The deep neural networks (DNN)-inspired cognitive state prediction method improved prediction performance significantly; however, the lack of explainability with DNNs and the unitary scoring approach fail to reveal the factors influencing human learning. Identifying…
Descriptors: Cognitive Mapping, Models, Prediction, Short Term Memory
Peer reviewed Peer reviewed
Direct linkDirect link
Aditya Shah; Ajay Devmane; Mehul Ranka; Prathamesh Churi – Education and Information Technologies, 2024
Online learning has grown due to the advancement of technology and flexibility. Online examinations measure students' knowledge and skills. Traditional question papers include inconsistent difficulty levels, arbitrary question allocations, and poor grading. The suggested model calibrates question paper difficulty based on student performance to…
Descriptors: Computer Assisted Testing, Difficulty Level, Grading, Test Construction
Peer reviewed Peer reviewed
Direct linkDirect link
Badal, Yudish Teshal; Sungkur, Roopesh Kevin – Education and Information Technologies, 2023
The outbreak of COVID-19 has caused significant disruption in all sectors and industries around the world. To tackle the spread of the novel coronavirus, the learning process and the modes of delivery had to be altered. Most courses are delivered traditionally with face-to-face or a blended approach through online learning platforms. In addition,…
Descriptors: Prediction, Models, Learning Analytics, Grades (Scholastic)
Peer reviewed Peer reviewed
Direct linkDirect link
Ramaswami, Gomathy; Susnjak, Teo; Mathrani, Anuradha; Umer, Rahila – Technology, Knowledge and Learning, 2023
Learning analytics dashboards (LADs) provide educators and students with a comprehensive snapshot of the learning domain. Visualizations showcasing student learning behavioral patterns can help students gain greater self-awareness of their learning progression, and at the same time assist educators in identifying those students who may be facing…
Descriptors: Prediction, Learning Analytics, Learning Management Systems, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Jin, Cong – Interactive Learning Environments, 2023
Since the advent of massive open online courses (MOOC), it has been the focus of educators and learners around the world, however the high dropout rate of MOOC has had a serious negative impact on its popularity and promotion. How to effectively predict students' dropout status in MOOC for early intervention has become a hot topic in MOOC…
Descriptors: MOOCs, Potential Dropouts, Prediction, Models
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  12  |  13