Publication Date
| In 2026 | 0 |
| Since 2025 | 28 |
| Since 2022 (last 5 years) | 162 |
| Since 2017 (last 10 years) | 444 |
| Since 2007 (last 20 years) | 1248 |
Descriptor
Source
Author
| Gaševic, Dragan | 7 |
| Pardos, Zachary A. | 7 |
| Baker, Ryan S. | 6 |
| Easom, Kenneth C. | 6 |
| Dawson, Shane | 5 |
| Wilson, Mark | 5 |
| Zhang, Zhiyong | 5 |
| de la Torre, Jimmy | 5 |
| Barnes, Tiffany | 4 |
| Hannan, Michael T. | 4 |
| Heffernan, Neil T. | 4 |
| More ▼ | |
Publication Type
Education Level
Audience
| Practitioners | 53 |
| Researchers | 43 |
| Administrators | 24 |
| Teachers | 24 |
| Policymakers | 19 |
| Counselors | 5 |
| Community | 3 |
| Parents | 3 |
| Media Staff | 2 |
| Students | 2 |
| Support Staff | 2 |
| More ▼ | |
Location
| Australia | 53 |
| United States | 35 |
| California | 31 |
| United Kingdom | 28 |
| China | 22 |
| Florida | 21 |
| Canada | 19 |
| Pennsylvania | 19 |
| United Kingdom (England) | 18 |
| New York | 17 |
| Indiana | 15 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
| Meets WWC Standards without Reservations | 1 |
| Meets WWC Standards with or without Reservations | 2 |
| Does not meet standards | 2 |
Wenchao Ma; Miguel A. Sorrel; Xiaoming Zhai; Yuan Ge – Journal of Educational Measurement, 2024
Most existing diagnostic models are developed to detect whether students have mastered a set of skills of interest, but few have focused on identifying what scientific misconceptions students possess. This article developed a general dual-purpose model for simultaneously estimating students' overall ability and the presence and absence of…
Descriptors: Models, Misconceptions, Diagnostic Tests, Ability
Fernando Rios-Avila; Michelle Lee Maroto – Sociological Methods & Research, 2024
Quantile regression (QR) provides an alternative to linear regression (LR) that allows for the estimation of relationships across the distribution of an outcome. However, as highlighted in recent research on the motherhood penalty across the wage distribution, different procedures for conditional and unconditional quantile regression (CQR, UQR)…
Descriptors: Regression (Statistics), Research Methodology, Alternative Assessment, Models
Yikai Lu; Lingbo Tong; Ying Cheng – Journal of Educational Data Mining, 2024
Knowledge tracing aims to model and predict students' knowledge states during learning activities. Traditional methods like Bayesian Knowledge Tracing (BKT) and logistic regression have limitations in granularity and performance, while deep knowledge tracing (DKT) models often suffer from lacking transparency. This paper proposes a…
Descriptors: Models, Intelligent Tutoring Systems, Prediction, Knowledge Level
Maxi Schulz; Malte Kramer; Oliver Kuss; Tim Mathes – Research Synthesis Methods, 2024
In sparse data meta-analyses (with few trials or zero events), conventional methods may distort results. Although better-performing one-stage methods have become available in recent years, their implementation remains limited in practice. This study examines the impact of using conventional methods compared to one-stage models by re-analysing…
Descriptors: Meta Analysis, Data Analysis, Research Methodology, Research Problems
Dudel, Christian; Schneider, Daniel C. – Sociological Methods & Research, 2023
Multistate models are often used in social research to analyze how individuals move between states. A typical application is the estimation of the lifetime spent in a certain state, like the lifetime spent in employment, or the lifetime spent in good health. Unfortunately, the estimation of such quantities is prone to several biases. In this…
Descriptors: Models, Computation, Bias, Disabilities
Schweizer, Karl; Gold, Andreas; Krampen, Dorothea – Educational and Psychological Measurement, 2023
In modeling missing data, the missing data latent variable of the confirmatory factor model accounts for systematic variation associated with missing data so that replacement of what is missing is not required. This study aimed at extending the modeling missing data approach to tetrachoric correlations as input and at exploring the consequences of…
Descriptors: Data, Models, Factor Analysis, Correlation
Yibei Yin – International Journal of Web-Based Learning and Teaching Technologies, 2023
In order to study the big data of college students' employment, this paper takes the big data of college students' employment as the premise, analyzes the current employment data by establishing a DBN model, and puts forward relevant management measures, aiming to provide scientific basis for the management of graduates' employment data. The…
Descriptors: College Students, Student Employment, Data Analysis, Artificial Intelligence
Jiawei Xiong; George Engelhard; Allan S. Cohen – Measurement: Interdisciplinary Research and Perspectives, 2025
It is common to find mixed-format data results from the use of both multiple-choice (MC) and constructed-response (CR) questions on assessments. Dealing with these mixed response types involves understanding what the assessment is measuring, and the use of suitable measurement models to estimate latent abilities. Past research in educational…
Descriptors: Responses, Test Items, Test Format, Grade 8
Keith C. Radley; Evan H. Dart – Journal of Behavioral Education, 2025
Recent research has indicated that the manner in which single-case data are typically displayed for visual analysis may influence rater decisions regarding the effect of an intervention. Subsequently, researchers have encouraged adherence to a standard assembly for linear graphs in order to control these effects. Others, however, have encouraged…
Descriptors: Graphs, Research Design, Visual Aids, Data Analysis
Heather Allmond Barker; Hollylynne S. Lee; Shaun Kellogg; Robin Anderson – Online Learning, 2024
Identifying motivation for enrollment in MOOCs has been an important way to predict participant success rates. But themes for motivation have largely centered around themes for enrolling in any MOOC, and not ones specific to the course being studied. In this study, qualitatively coding discussion forums was combined with topic modeling to identify…
Descriptors: MOOCs, Motivation, Enrollment, Professional Development
Rashelle J. Musci; Joseph Kush; Elise T. Pas; Catherine P. Bradshaw – Grantee Submission, 2024
Given the increased focus of educational research on what works for whom and under what circumstances over the last decade, educational researchers are increasingly turning toward mixture models to identify heterogeneous subgroups among students. Such data are inherently nested, as students are nested within classrooms and schools. Yet there has…
Descriptors: Hierarchical Linear Modeling, Data Analysis, Nonparametric Statistics, Educational Research
Shuanghong Shen; Qi Liu; Zhenya Huang; Yonghe Zheng; Minghao Yin; Minjuan Wang; Enhong Chen – IEEE Transactions on Learning Technologies, 2024
Modern online education has the capacity to provide intelligent educational services by automatically analyzing substantial amounts of student behavioral data. Knowledge tracing (KT) is one of the fundamental tasks for student behavioral data analysis, aiming to monitor students' evolving knowledge state during their problem-solving process. In…
Descriptors: Student Behavior, Electronic Learning, Data Analysis, Models
Napol Rachatasumrit; Paulo F. Carvalho; Kenneth R. Koedinger – International Educational Data Mining Society, 2024
What does it mean for a model to be a better model? One conceptualization, indeed a common one in Educational Data Mining, is that a better model is the one that fits the data better, that is, higher prediction accuracy. However, oftentimes, models that maximize prediction accuracy do not provide meaningful parameter estimates, making them less…
Descriptors: Data Analysis, Models, Prediction, Accuracy
Jade Mai Cock; Hugues Saltini; Haoyu Sheng; Riya Ranjan; Richard Davis; Tanja Käser – International Educational Data Mining Society, 2024
Predictive models play a pivotal role in education by aiding learning, teaching, and assessment processes. However, they have the potential to perpetuate educational inequalities through algorithmic biases. This paper investigates how behavioral differences across demographic groups of different sizes propagate through the student success modeling…
Descriptors: Demography, Statistical Bias, Algorithms, Behavior
David Bruns-Smith; Oliver Dukes; Avi Feller; Elizabeth L. Ogburn – Grantee Submission, 2024
We provide a novel characterization of augmented balancing weights, also known as automatic debiased machine learning (AutoDML). These popular "doubly robust" or "de-biased machine learning estimators" combine outcome modeling with balancing weights -- weights that achieve covariate balance directly in lieu of estimating and…
Descriptors: Regression (Statistics), Weighted Scores, Data Analysis, Robustness (Statistics)

Peer reviewed
Direct link
