NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Elementary and Secondary…1
What Works Clearinghouse Rating
Showing 241 to 255 of 606 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Maaliw, Renato R. III; Ballera, Melvin A. – International Association for Development of the Information Society, 2017
The usage of data mining has dramatically increased over the past few years and the education sector is leveraging this field in order to analyze and gain intuitive knowledge in terms of the vast accumulated data within its confines. The primary objective of this study is to compare the results of different classification techniques such as Naïve…
Descriptors: Classification, Cognitive Style, Electronic Learning, Decision Making
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Arenson, Ethan A.; Karabatsos, George – Grantee Submission, 2017
Item response models typically assume that the item characteristic (step) curves follow a logistic or normal cumulative distribution function, which are strictly monotone functions of person test ability. Such assumptions can be overly-restrictive for real item response data. We propose a simple and more flexible Bayesian nonparametric IRT model…
Descriptors: Bayesian Statistics, Item Response Theory, Nonparametric Statistics, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ozaltin, Nur Ozge; Besterfield-Sacre, Mary; Clark, Renee M. – Advances in Engineering Education, 2015
Learning how to design innovatively is a critical process skill for undergraduate engineers in the 21st century. To this end, our paper discusses the development and validation of a Bayesian network decision support tool that can be used by engineering educators to make recommendations that positively impact the innovativeness of product designs.…
Descriptors: Engineering Education, Decision Making, Teacher Attitudes, College Faculty
Peer reviewed Peer reviewed
Direct linkDirect link
Jenkins, Gavin W.; Samuelson, Larissa K.; Smith, Jodi R.; Spencer, John P. – Cognitive Science, 2015
It is unclear how children learn labels for multiple overlapping categories such as "Labrador," "dog," and "animal." Xu and Tenenbaum (2007a) suggested that learners infer correct meanings with the help of Bayesian inference. They instantiated these claims in a Bayesian model, which they tested with preschoolers and…
Descriptors: Generalization, Young Children, Inferences, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Kohli, Nidhi; Harring, Jeffrey R.; Hancock, Gregory R. – Educational and Psychological Measurement, 2013
Latent growth curve models with piecewise functions are flexible and useful analytic models for investigating individual behaviors that exhibit distinct phases of development in observed variables. As an extension of this framework, this study considers a piecewise linear-linear latent growth mixture model (LGMM) for describing segmented change of…
Descriptors: Models, Statistical Analysis, Goodness of Fit, Change
Peer reviewed Peer reviewed
Direct linkDirect link
Marianti, Sukaesi; Fox, Jean-Paul; Avetisyan, Marianna; Veldkamp, Bernard P.; Tijmstra, Jesper – Journal of Educational and Behavioral Statistics, 2014
Many standardized tests are now administered via computer rather than paper-and-pencil format. In a computer-based testing environment, it is possible to record not only the test taker's response to each question (item) but also the amount of time spent by the test taker in considering and answering each item. Response times (RTs) provide…
Descriptors: Reaction Time, Response Style (Tests), Computer Assisted Testing, Bayesian Statistics
Doskey, Steven Craig – ProQuest LLC, 2014
This research presents an innovative means of gauging Systems Engineering effectiveness through a Systems Engineering Relative Effectiveness Index (SE REI) model. The SE REI model uses a Bayesian Belief Network to map causal relationships in government acquisitions of Complex Information Systems (CIS), enabling practitioners to identify and…
Descriptors: Engineering, Systems Development, Program Development, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size
Beheshti, Behzad; Desmarais, Michel C. – International Educational Data Mining Society, 2015
This study investigates the issue of the goodness of fit of different skills assessment models using both synthetic and real data. Synthetic data is generated from the different skills assessment models. The results show wide differences of performances between the skills assessment models over synthetic data sets. The set of relative performances…
Descriptors: Goodness of Fit, Student Evaluation, Skills, Models
Tang, Steven; Gogel, Hannah; McBride, Elizabeth; Pardos, Zachary A. – International Educational Data Mining Society, 2015
Online adaptive tutoring systems are increasingly being used in classrooms as a way to provide guided learning for students. Such tutors have the potential to provide tailored feedback based on specific student needs and misunderstandings. Bayesian knowledge tracing (BKT) is used to model student knowledge when knowledge is assumed to be changing…
Descriptors: Intelligent Tutoring Systems, Difficulty Level, Bayesian Statistics, Models
Sutovsky, Peter – ProQuest LLC, 2013
The main goal of this research is to design, implement, and evaluate a novel explanation method, the hierarchical explanation method (HEM), for explaining Bayesian network (BN) inference when the network is modeling a population of conditionally independent agents, each of which is modeled as a subnetwork. For example, consider disease-outbreak…
Descriptors: Bayesian Statistics, Networks, Statistical Inference, Models
Liu, Ran; Koedinger, Kenneth R. – International Educational Data Mining Society, 2015
A growing body of research suggests that accounting for student specific variability in educational data can improve modeling accuracy and may have implications for individualizing instruction. The Additive Factors Model (AFM), a logistic regression model used to fit educational data and discover/refine skill models of learning, contains a…
Descriptors: Models, Regression (Statistics), Learning, Classification
Kuo, Tzu-Chun – ProQuest LLC, 2015
Item response theory (IRT) has gained an increasing popularity in large-scale educational and psychological testing situations because of its theoretical advantages over classical test theory. Unidimensional graded response models (GRMs) are useful when polytomous response items are designed to measure a unified latent trait. They are limited in…
Descriptors: Item Response Theory, Bayesian Statistics, Computation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Allen, Jeff – Applied Measurement in Education, 2017
Using a sample of schools testing annually in grades 9-11 with a vertically linked series of assessments, a latent growth curve model is used to model test scores with student intercepts and slopes nested within school. Missed assessments can occur because of student mobility, student dropout, absenteeism, and other reasons. Missing data…
Descriptors: Achievement Gains, Academic Achievement, Growth Models, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
McClelland, James L.; Mirman, Daniel; Bolger, Donald J.; Khaitan, Pranav – Cognitive Science, 2014
In a seminal 1977 article, Rumelhart argued that perception required the simultaneous use of multiple sources of information, allowing perceivers to optimally interpret sensory information at many levels of representation in real time as information arrives. Building on Rumelhart's arguments, we present the Interactive Activation…
Descriptors: Perception, Comprehension, Cognitive Processes, Alphabets
Pages: 1  |  ...  |  13  |  14  |  15  |  16  |  17  |  18  |  19  |  20  |  21  |  ...  |  41