Publication Date
In 2025 | 8 |
Since 2024 | 44 |
Since 2021 (last 5 years) | 160 |
Since 2016 (last 10 years) | 192 |
Since 2006 (last 20 years) | 194 |
Descriptor
Source
Author
Baker, Ryan S. | 8 |
Xia, Xiaona | 4 |
Amisha Jindal | 3 |
Ashish Gurung | 3 |
Barnes, Tiffany | 3 |
Chi, Min | 3 |
Erin Ottmar | 3 |
Gaševic, Dragan | 3 |
Hutt, Stephen | 3 |
Ji-Eun Lee | 3 |
Paquette, Luc | 3 |
More ▼ |
Publication Type
Education Level
Audience
Students | 1 |
Location
Australia | 5 |
China | 3 |
Netherlands | 3 |
South Korea | 3 |
California (Stanford) | 2 |
Canada | 2 |
Estonia | 2 |
Japan | 2 |
Massachusetts | 2 |
Spain | 2 |
Thailand | 2 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 2 |
Test of English for… | 2 |
Education Longitudinal Study… | 1 |
Motivated Strategies for… | 1 |
Patterns of Adaptive Learning… | 1 |
Program for the International… | 1 |
What Works Clearinghouse Rating
Chenglu Li; Wanli Xing; Walter Leite – Grantee Submission, 2022
A discussion forum is a valuable tool to support student learning in online contexts. However, interactions in online discussion forums are sparse, leading to other issues such as low engagement and dropping out. Recent educational studies have examined the affordances of conversational agents (CA) powered by artificial intelligence (AI) to…
Descriptors: Social Responsibility, Computer Mediated Communication, Group Discussion, Artificial Intelligence
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2022
This paper demonstrates how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. We examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance prediction; and (2) what types of in-game features were associated with student…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Nakayama, Keita; Shimada, Atsushi; Minematsu, Tsubasa; Taniguchi, Yuta; Taniguchi, Rin-Ichiro – International Association for Development of the Information Society, 2019
Thanks to an increase in the amount of information on the Internet and the spread of ICT-supported educational environments, much attention has been paid to learning support based on "smart" recommendation technologies. In this study, we propose an education improvement model based on the recommender system using the human-in-the-loop…
Descriptors: Models, Information Dissemination, Internet, Educational Technology
Archer, Elizabeth; Prinsloo, Paul – Assessment & Evaluation in Higher Education, 2020
Assessment and learning analytics both collect, analyse and use student data, albeit different types of data and to some extent, for various purposes. Based on the data collected and analysed, learning analytics allow for decisions to be made not only with regard to evaluating progress in achieving learning outcomes but also evaluative judgments…
Descriptors: Learning Analytics, Student Evaluation, Educational Objectives, Student Behavior
Mandalapu, Varun; Chen, Lujie Karen; Chen, Zhiyuan; Gong, Jiaqi – International Educational Data Mining Society, 2021
With the increasing adoption of Learning Management Systems (LMS) in colleges and universities, research in exploring the interaction data captured by these systems is promising in developing a better learning environment and improving teaching practice. Most of these research efforts focused on course-level variables to predict student…
Descriptors: Integrated Learning Systems, Interaction, Undergraduate Students, Minority Group Students
Amy Graham Goodman – ProQuest LLC, 2021
The goal of learning analytics is to optimize learning and the environments in which it occurs. Since 2011, when learning analytics was defined as a separate and distinct area of academic inquiry, the literature has identified a need for research that presents evidence of effective learning analytics, as well as, learning analytics research that…
Descriptors: Metacognition, Learning Analytics, Calculus, Mathematics Instruction
Farrow, Elaine; Moore, Johanna D.; Gaševic, Dragan – Journal of Learning Analytics, 2022
By participating in asynchronous course discussion forums, students can work together to refine their ideas and construct knowledge collaboratively. Typically, some messages simply repeat or paraphrase course content, while others bring in new material, demonstrate reasoning, integrate concepts, and develop solutions. Through the messages they…
Descriptors: Asynchronous Communication, Computer Mediated Communication, Group Discussion, Learning Analytics
Emara, Mona; Hutchins, Nicole M.; Grover, Shuchi; Snyder, Caitlin; Biswas, Gautam – Journal of Learning Analytics, 2021
The integration of computational modelling in science classrooms provides a unique opportunity to promote key 21st century skills including computational thinking (CT) and collaboration. The open-ended, problem-solving nature of the task requires groups to grapple with the combination of two domains (science and computing) as they collaboratively…
Descriptors: Cooperative Learning, Self Management, Metacognition, Computer Science Education
Rajabalee, Yousra Banoor; Santally, Mohammad Issack; Rennie, Frank – International Journal of Distance Education Technologies, 2020
This paper reports the findings of a research using marks of students in learning activities of an online module to build a predictive model of performance for the final assessment of the module. The objectives were (1) to compare the performances of students of two cohorts in terms of continuous learning assessment marks and final learning…
Descriptors: Performance Factors, Electronic Learning, Learning Analytics, Learning Activities
Georgakopoulos, Ioannis; Chalikias, Miltiadis; Zakopoulos, Vassilis; Kossieri, Evangelia – Education Sciences, 2020
Our modern era has brought about radical changes in the way courses are delivered and various teaching methods are being introduced to answer the purpose of meeting the modern learning challenges. On that account, the conventional way of teaching is giving place to a teaching method which combines conventional instructional strategies with…
Descriptors: Academic Failure, Blended Learning, Learner Engagement, Student Participation
Chu, Wei; Pavlik, Philip I., Jr. – International Educational Data Mining Society, 2023
In adaptive learning systems, various models are employed to obtain the optimal learning schedule and review for a specific learner. Models of learning are used to estimate the learner's current recall probability by incorporating features or predictors proposed by psychological theory or empirically relevant to learners' performance. Logistic…
Descriptors: Reaction Time, Accuracy, Models, Predictor Variables
Yanjin Long; Kenneth Holstein; Vincent Aleven – Grantee Submission, 2018
Accurately modeling individual students' knowledge growth is important in many applications of learning analytics. A key step is to decompose the knowledge targeted in the instruction into detailed knowledge components (KCs). We search for an accurate KC model for basic equation solving skills, using data from an intelligent tutoring system (ITS),…
Descriptors: Learning Processes, Mathematics Skills, Equations (Mathematics), Problem Solving
Kim, Byungsoo; Yu, Hangyeol; Shin, Dongmin; Choi, Youngduck – International Educational Data Mining Society, 2021
The needs for precisely estimating a student's academic performance have been emphasized with an increasing amount of attention paid to Intelligent Tutoring System (ITS). However, since labels for academic performance, such as test scores, are collected from outside of ITS, obtaining the labels is costly, leading to label-scarcity problem which…
Descriptors: Academic Achievement, Intelligent Tutoring Systems, Prediction, Scores
Smith, Brent; Milham, Laura – Advanced Distributed Learning Initiative, 2021
Since 2016, the Advanced Distributed Learning (ADL) Initiative has been developing the Total Learning Architecture (TLA), a 4-pillar data strategy for managing lifelong learning. Each pillar describes a type of learning-related data that needs to be captured, managed, and shared across an organization. Each data pillar is built on a set of…
Descriptors: Learning Analytics, Computer Software, Metadata, Learning Activities
Sungjin Nam – ProQuest LLC, 2020
This dissertation presents various machine learning applications for predicting different cognitive states of students while they are using a vocabulary tutoring system, DSCoVAR. We conduct four studies, each of which includes a comprehensive analysis of behavioral and linguistic data and provides data-driven evidence for designing personalized…
Descriptors: Vocabulary Development, Intelligent Tutoring Systems, Student Evaluation, Learning Analytics