NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Elementary and Secondary…1
What Works Clearinghouse Rating
Showing 151 to 165 of 606 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ossewaarde, Roelant; Jonkers, Roel; Jalvingh, Fedor; Bastiaanse, Roelien – Journal of Speech, Language, and Hearing Research, 2020
Purpose: Corpus analyses of spontaneous language fragments of varying length provide useful insights in the language change caused by brain damage, such as caused by some forms of dementia. Sample size is an important experimental parameter to consider when designing spontaneous language analyses studies. Sample length influences the confidence…
Descriptors: Speech Communication, Dementia, Computational Linguistics, Neurological Impairments
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2020
Modeling student learning processes is highly complex since it is influenced by many factors such as motivation and learning habits. The high volume of features and tools provided by computer-based learning environments confounds the task of tracking student knowledge even further. Deep Learning models such as Long-Short Term Memory (LSTMs) and…
Descriptors: Time, Models, Artificial Intelligence, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Ames, Allison J. – Measurement: Interdisciplinary Research and Perspectives, 2018
Bayesian item response theory (IRT) modeling stages include (a) specifying the IRT likelihood model, (b) specifying the parameter prior distributions, (c) obtaining the posterior distribution, and (d) making appropriate inferences. The latter stage, and the focus of this research, includes model criticism. Choice of priors with the posterior…
Descriptors: Bayesian Statistics, Item Response Theory, Statistical Inference, Prediction
Yuxi Qiu – ProQuest LLC, 2018
Research in education has become increasingly reliant on statistical modeling frameworks to be reflective of the subject matter, to accurately assess what students know and can do, to assist instructors with curriculum design by supplementing informative feedback, and to support policy-makers when making evidence-based decisions. A common feature…
Descriptors: Goodness of Fit, Learning Theories, Bayesian Statistics, Curriculum Design
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Nana; Bolt, Daniel M. – Educational and Psychological Measurement, 2021
This paper presents a mixture item response tree (IRTree) model for extreme response style. Unlike traditional applications of single IRTree models, a mixture approach provides a way of representing the mixture of respondents following different underlying response processes (between individuals), as well as the uncertainty present at the…
Descriptors: Item Response Theory, Response Style (Tests), Models, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Roettger, Timo B.; Franke, Michael – Cognitive Science, 2019
Intonation plays an integral role in comprehending spoken language. Listeners can rapidly integrate intonational information to predictively map a given pitch accent onto the speaker's likely referential intentions. We use mouse tracking to investigate two questions: (a) how listeners draw predictive inferences based on information from…
Descriptors: Cues, Intonation, Language Processing, Speech Communication
Jing Lu; Chun Wang; Ningzhong Shi – Grantee Submission, 2023
In high-stakes, large-scale, standardized tests with certain time limits, examinees are likely to engage in either one of the three types of behavior (e.g., van der Linden & Guo, 2008; Wang & Xu, 2015): solution behavior, rapid guessing behavior, and cheating behavior. Oftentimes examinees do not always solve all items due to various…
Descriptors: High Stakes Tests, Standardized Tests, Guessing (Tests), Cheating
Peer reviewed Peer reviewed
Direct linkDirect link
Jarecki, Jana B.; Meder, Björn; Nelson, Jonathan D. – Cognitive Science, 2018
Humans excel in categorization. Yet from a computational standpoint, learning a novel probabilistic classification task involves severe computational challenges. The present paper investigates one way to address these challenges: assuming class-conditional independence of features. This feature independence assumption simplifies the inference…
Descriptors: Classification, Conditioning, Inferences, Novelty (Stimulus Dimension)
Peer reviewed Peer reviewed
Direct linkDirect link
Leventhal, Brian C.; Stone, Clement A. – Measurement: Interdisciplinary Research and Perspectives, 2018
Interest in Bayesian analysis of item response theory (IRT) models has grown tremendously due to the appeal of the paradigm among psychometricians, advantages of these methods when analyzing complex models, and availability of general-purpose software. Possible models include models which reflect multidimensionality due to designed test structure,…
Descriptors: Bayesian Statistics, Item Response Theory, Models, Psychometrics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Doroudi, Shayan; Brunskill, Emma – International Educational Data Mining Society, 2017
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
Descriptors: Bayesian Statistics, Research Problems, Models, Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Fernández-López, María; Marcet, Ana; Perea, Manuel – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2019
In past decades, researchers have conducted a myriad of masked priming lexical decision experiments aimed at unveiling the early processes underlying lexical access. A relatively overlooked question is whether a masked unrelated wordlike/unwordlike prime influences the processing of the target stimuli. If participants apply to the primes the same…
Descriptors: Priming, Decision Making, Language Processing, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Man, Kaiwen; Harring, Jeffrey R. – Educational and Psychological Measurement, 2019
With the development of technology-enhanced learning platforms, eye-tracking biometric indicators can be recorded simultaneously with students item responses. In the current study, visual fixation, an essential eye-tracking indicator, is modeled to reflect the degree of test engagement when a test taker solves a set of test questions. Three…
Descriptors: Test Items, Eye Movements, Models, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Frermann, Lea; Lapata, Mirella – Cognitive Science, 2016
Models of category learning have been extensively studied in cognitive science and primarily tested on perceptual abstractions or artificial stimuli. In this paper, we focus on categories acquired from natural language stimuli, that is, words (e.g., "chair" is a member of the furniture category). We present a Bayesian model that, unlike…
Descriptors: Classification, Bayesian Statistics, Models, Cognitive Science
Suh, Youngsuk; Cho, Sun-Joo; Bottge, Brian A. – Grantee Submission, 2018
This article presents a multilevel longitudinal nested logit model for analyzing correct response and error types in multilevel longitudinal intervention data collected under a pretest-posttest, cluster randomized trial design. The use of the model is illustrated with a real data analysis, including a model comparison study regarding model…
Descriptors: Hierarchical Linear Modeling, Longitudinal Studies, Error Patterns, Change
Peer reviewed Peer reviewed
Direct linkDirect link
Mimis, Mohamed; El Hajji, Mohamed; Es-saady, Youssef; Oueld Guejdi, Abdellah; Douzi, Hassan; Mammass, Driss – Education and Information Technologies, 2019
The educational recommendation system to provide support for academic guidance and adaptive learning has always been an important issue of research for smart education. A bad guidance can give rise to difficulties in further studies and can be extended to school dropout. This paper explores the potential of Educational Data Mining for academic…
Descriptors: Educational Counseling, Guidance, Educational Research, Data Collection
Pages: 1  |  ...  |  7  |  8  |  9  |  10  |  11  |  12  |  13  |  14  |  15  |  ...  |  41