NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 136 to 150 of 4,463 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jiang, Shiyan; Tang, Hengtao; Tatar, Cansu; Rosé, Carolyn P.; Chao, Jie – Learning, Media and Technology, 2023
It's critical to foster artificial intelligence (AI) literacy for high school students, the first generation to grow up surrounded by AI, to understand working mechanism of data-driven AI technologies and critically evaluate automated decisions from predictive models. While efforts have been made to engage youth in understanding AI through…
Descriptors: Artificial Intelligence, High School Students, Models, Classification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Dogan, Esra; Bay, Erdal; Dös, Bülent – International Education Studies, 2023
This study analyzed studies done in Turkey in the context of curriculum evaluation (CE) by asking, "How is it made? The study was carried out in two stages. In the first stage, the document analysis method used 215 theses written between 1991 and 2020 on CE were analyzed according to the "thesis review form." In the second stage,…
Descriptors: Curriculum Evaluation, Evaluation Methods, Foreign Countries, Theses
Jungsun Go – ProQuest LLC, 2023
The purpose of this study was to investigate the effectiveness of four different models (bifactor, CTC(M-1), CTCU and unidimensional) as to optimal model selection when the wording effect associated with negatively worded items was present. A Monte Carlo simulation study was conducted to compare model-data fit and accuracy in parameter estimates…
Descriptors: Language Usage, Negative Attitudes, Models, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Araitz Uskola; Nahia Seijas – Research in Science & Technological Education, 2023
Background: Science education should encompass enculturation in science which implies performing scientific practices such as use of data and modelling, in authentic contexts like the field. Purpose: This work aims to determine how preservice elementary teachers (PETs) use data obtained in the field, and how these data contribute to the process of…
Descriptors: Geology, Preservice Teachers, Elementary School Teachers, Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Achmad Bisri; Supardi; Yayu Heryatun; Hunainah; Annisa Navira – Journal of Education and Learning (EduLearn), 2025
In the educational landscape, educational data mining has emerged as an indispensable tool for institutions seeking to deliver exceptional and high-quality education. However, education data revealed suboptimal academic performance among a significant portion of the student population, which consequently resulted in delayed graduation. This…
Descriptors: Data Analysis, Models, Academic Achievement, Evaluation Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Olsson, Ulf – Practical Assessment, Research & Evaluation, 2022
We discuss analysis of 5-grade Likert type data in the two-sample case. Analysis using two-sample "t" tests, nonparametric Wilcoxon tests, and ordinal regression methods, are compared using simulated data based on an ordinal regression paradigm. One thousand pairs of samples of size "n"=10 and "n"=30 were generated,…
Descriptors: Regression (Statistics), Likert Scales, Sampling, Nonparametric Statistics
Ryan Derickson – ProQuest LLC, 2022
Item Response Theory (IRT) models are a popular analytic method for self report data. We show how traditional IRT models can be vulnerable to specific kinds of asymmetric measurement error (AME) in self-report data, because the models spread the error to all estimates -- even those of items that do not contribute error. We quantify the impact of…
Descriptors: Item Response Theory, Measurement Techniques, Error of Measurement, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Faucon, Louis; Olsen, Jennifer K.; Haklev, Stian; Dillenbourg, Pierre – Journal of Learning Analytics, 2020
In classrooms, some transitions between activities impose (quasi-)synchronicity, meaning there is a need for learners to move between activities at the same time. To make real-time decisions about when to move to the next activity, teachers need to be able to balance the progress of their students as they work at different paces. In this paper, we…
Descriptors: Classroom Techniques, Prediction, Learning Activities, Student Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Cechinel, Cristian; Ochoa, Xavier; Lemos dos Santos, Henrique; Carvalho Nunes, João Batista; Rodés, Virginia; Marques Queiroga, Emanuel – British Journal of Educational Technology, 2020
The growth of Learning Analytics (LA) as a research field has been extensively documented since its beginnings. This paper provides a broad overview of the publications that Latin American authors have published in the last years by performing a quantitative review of the literature (from 2011 to 2019). A total of 282 papers were collected and…
Descriptors: Data Analysis, Authors, Foreign Countries, Ethics
Peer reviewed Peer reviewed
Direct linkDirect link
Perez-Vergara, Kelly – Strategic Enrollment Management Quarterly, 2020
Institutional staff such as enrollment managers, business officers, and institutional researchers are often asked to predict enrollments. Developing any predictive model can be intimidating, particularly when there is no textbook to follow. This paper provides a practical framework for generating enrollment projection options and for evaluating…
Descriptors: Enrollment Projections, Enrollment Management, Enrollment Trends, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Khan, Anupam; Ghosh, Soumya K. – Education and Information Technologies, 2021
Student performance modelling is one of the challenging and popular research topics in educational data mining (EDM). Multiple factors influence the performance in non-linear ways; thus making this field more attractive to the researchers. The widespread availability of educational datasets further catalyse this interestingness, especially in…
Descriptors: Academic Achievement, Prediction, Data Analysis, Meta Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Oliveira Moraes, Laura; Pedreira, Carlos Eduardo – IEEE Transactions on Learning Technologies, 2021
Manually determining concepts present in a group of questions is a challenging and time-consuming process. However, the process is an essential step while modeling a virtual learning environment since a mapping between concepts and questions using mastery level assessment and recommendation engines is required. In this article, we investigated…
Descriptors: Computer Science Education, Semantics, Coding, Matrices
Erin W. Post – ProQuest LLC, 2024
Multivariate count data is ubiquitous in many areas of research including the physical, biological, and social sciences. These data are traditionally modeled with the Dirichlet Multinomial distribution (DM). A new, more flexible Dirichlet-Tree Multinomial (DTM) model is gaining in popularity. Here, we consider Bayesian DTM regression models. Our…
Descriptors: Regression (Statistics), Multivariate Analysis, Statistical Distributions, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Rebeckah K. Fussell; Emily M. Stump; N. G. Holmes – Physical Review Physics Education Research, 2024
Physics education researchers are interested in using the tools of machine learning and natural language processing to make quantitative claims from natural language and text data, such as open-ended responses to survey questions. The aspiration is that this form of machine coding may be more efficient and consistent than human coding, allowing…
Descriptors: Physics, Educational Researchers, Artificial Intelligence, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Michelle Pauley Murphy; Woei Hung – TechTrends: Linking Research and Practice to Improve Learning, 2024
Constructing a consensus problem space from extensive qualitative data for an ill-structured real-life problem and expressing the result to a broader audience is challenging. To effectively communicate a complex problem space, visualization of that problem space must elucidate inter-causal relationships among the problem variables. In this…
Descriptors: Information Retrieval, Data Analysis, Pattern Recognition, Artificial Intelligence
Pages: 1  |  ...  |  6  |  7  |  8  |  9  |  10  |  11  |  12  |  13  |  14  |  ...  |  298