ERIC Number: ED575927
Record Type: Non-Journal
Publication Date: 2016
Pages: 15
Abstractor: As Provided
ISBN: 978-1-3696-5790-6
ISSN: N/A
EISSN: N/A
Available Date: N/A
Obtaining Accurate Probabilities Using Classifier Calibration
Pakdaman Naeini, Mahdi
ProQuest LLC, Ph.D. Dissertation, University of Pittsburgh
Learning probabilistic classification and prediction models that generate accurate probabilities is essential in many prediction and decision-making tasks in machine learning and data mining. One way to achieve this goal is to post-process the output of classification models to obtain more accurate probabilities. These post-processing methods are often referred to as calibration methods in the machine learning literature. This thesis describes a suite of parametric and non-parametric methods for calibrating the output of classification and prediction models. In order to evaluate the calibration performance of a classifier, we introduce two new calibration measures that are intuitive statistics of the calibration curves. We present extensive experimental results on both simulated and real datasets to evaluate the performance of the proposed methods compared with commonly used calibration methods in the literature. In particular, in terms of binary classifier calibration, our experimental results show that the proposed methods are able to improve the calibration power of classifiers while retaining their discrimination performance. Our theoretical findings show that by using a simple non-parametric calibration method, it is possible to improve the calibration performance of a classifier without sacrificing discrimination capability. The methods are also computationally tractable for large-scale datasets as they run in "O(N log N)" time, where N is the number of samples. In this thesis we also introduce a novel framework to derive calibrated probabilities of causal relationships from observational data. The framework consists of three main components: (1) an approximate method for generating initial probability estimates of the edge types for each pair of variables, (2) the availability of a relatively small number of the causal relationships in the network for which the truth status is known, which we call a "calibration training set", and (3) a calibration method for using the approximate probability estimates and the calibration training set to generate calibrated probabilities for the many remaining pairs of variables. Our experiments on a range of simulated data support that the proposed approach improves the calibration of edge predictions. The results also support that the approach often improves the precision and recall of those predictions. [The dissertation citations contained here are published with the permission of ProQuest LLC. Further reproduction is prohibited without permission. Copies of dissertations may be obtained by Telephone (800) 1-800-521-0600. Web page: http://www.proquest.com.bibliotheek.ehb.be/en-US/products/dissertations/individuals.shtml.]
ProQuest LLC. 789 East Eisenhower Parkway, P.O. Box 1346, Ann Arbor, MI 48106. Tel: 800-521-0600; Web site: http://www.proquest.com.bibliotheek.ehb.be/en-US/products/dissertations/individuals.shtml
Publication Type: Dissertations/Theses - Doctoral Dissertations
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A