Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 17 |
Since 2006 (last 20 years) | 36 |
Descriptor
Models | 39 |
Monte Carlo Methods | 39 |
Test Items | 39 |
Item Response Theory | 30 |
Markov Processes | 21 |
Bayesian Statistics | 17 |
Computation | 12 |
Test Bias | 10 |
Accuracy | 9 |
Difficulty Level | 9 |
Comparative Analysis | 8 |
More ▼ |
Source
Author
Chang, Hua-Hua | 3 |
Jiao, Hong | 3 |
Finch, Holmes | 2 |
Luo, Yong | 2 |
Man, Kaiwen | 2 |
Tao, Jian | 2 |
Yao, Lihua | 2 |
Abdullah Abdul Wahab Alsayar | 1 |
Allen, Nancy L. | 1 |
Ames, Allison | 1 |
Atar, Burcu | 1 |
More ▼ |
Publication Type
Journal Articles | 35 |
Reports - Research | 28 |
Reports - Evaluative | 6 |
Reports - Descriptive | 3 |
Dissertations/Theses -… | 2 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 3 |
Secondary Education | 3 |
Postsecondary Education | 2 |
Early Childhood Education | 1 |
Elementary Education | 1 |
Grade 3 | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Primary Education | 1 |
Audience
Location
Saudi Arabia | 1 |
Taiwan | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Justin L. Kern – Journal of Educational and Behavioral Statistics, 2024
Given the frequent presence of slipping and guessing in item responses, models for the inclusion of their effects are highly important. Unfortunately, the most common model for their inclusion, the four-parameter item response theory model, potentially has severe deficiencies related to its possible unidentifiability. With this issue in mind, the…
Descriptors: Item Response Theory, Models, Bayesian Statistics, Generalization
Joo, Seang-Hwane; Lee, Philseok – Journal of Educational Measurement, 2022
Abstract This study proposes a new Bayesian differential item functioning (DIF) detection method using posterior predictive model checking (PPMC). Item fit measures including infit, outfit, observed score distribution (OSD), and Q1 were considered as discrepancy statistics for the PPMC DIF methods. The performance of the PPMC DIF method was…
Descriptors: Test Items, Bayesian Statistics, Monte Carlo Methods, Prediction
Abdullah Abdul Wahab Alsayar – ProQuest LLC, 2021
Testlets bring several perks in the development and administration of tests, such as 1) the construction of meaningful test items, 2) the avoidance of non-relevant context exposure, 3) the improvement of testing efficiency, and 4) the progression of testlet items requiring higher thinking skills. Thus, the inclusion of testlets in educational…
Descriptors: Test Construction, Testing, Test Items, Efficiency
Lozano, José H.; Revuelta, Javier – Educational and Psychological Measurement, 2023
The present paper introduces a general multidimensional model to measure individual differences in learning within a single administration of a test. Learning is assumed to result from practicing the operations involved in solving the items. The model accounts for the possibility that the ability to learn may manifest differently for correct and…
Descriptors: Bayesian Statistics, Learning Processes, Test Items, Item Analysis
Leventhal, Brian; Ames, Allison – Educational Measurement: Issues and Practice, 2020
In this digital ITEMS module, Dr. Brian Leventhal and Dr. Allison Ames provide an overview of "Monte Carlo simulation studies" (MCSS) in "item response theory" (IRT). MCSS are utilized for a variety of reasons, one of the most compelling being that they can be used when analytic solutions are impractical or nonexistent because…
Descriptors: Item Response Theory, Monte Carlo Methods, Simulation, Test Items
Luo, Yong; Liang, Xinya – Measurement: Interdisciplinary Research and Perspectives, 2019
Current methods that simultaneously model differential testlet functioning (DTLF) and differential item functioning (DIF) constrain the variances of latent ability and testlet effects to be equal between the focal and the reference groups. Such a constraint can be stringent and unrealistic with real data. In this study, we propose a multigroup…
Descriptors: Test Items, Item Response Theory, Test Bias, Models
Qiao, Xin; Jiao, Hong – Journal of Educational Measurement, 2021
This study proposes explanatory cognitive diagnostic model (CDM) jointly incorporating responses and response times (RTs) with the inclusion of item covariates related to both item responses and RTs. The joint modeling of item responses and RTs intends to provide more information for cognitive diagnosis while item covariates can be used to predict…
Descriptors: Cognitive Measurement, Models, Reaction Time, Test Items
Zhan, Peida; Jiao, Hong; Man, Kaiwen; Wang, Lijun – Journal of Educational and Behavioral Statistics, 2019
In this article, we systematically introduce the just another Gibbs sampler (JAGS) software program to fit common Bayesian cognitive diagnosis models (CDMs) including the deterministic inputs, noisy "and" gate model; the deterministic inputs, noisy "or" gate model; the linear logistic model; the reduced reparameterized unified…
Descriptors: Bayesian Statistics, Computer Software, Models, Test Items
Trendtel, Matthias; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2021
A multidimensional Bayesian item response model is proposed for modeling item position effects. The first dimension corresponds to the ability that is to be measured; the second dimension represents a factor that allows for individual differences in item position effects called persistence. This model allows for nonlinear item position effects on…
Descriptors: Bayesian Statistics, Item Response Theory, Test Items, Test Format
Joshua B. Gilbert; James S. Kim; Luke W. Miratrix – Annenberg Institute for School Reform at Brown University, 2022
Analyses that reveal how treatment effects vary allow researchers, practitioners, and policymakers to better understand the efficacy of educational interventions. In practice, however, standard statistical methods for addressing Heterogeneous Treatment Effects (HTE) fail to address the HTE that may exist within outcome measures. In this study, we…
Descriptors: Item Response Theory, Models, Formative Evaluation, Statistical Inference
Finch, Holmes; French, Brian F. – Applied Measurement in Education, 2019
The usefulness of item response theory (IRT) models depends, in large part, on the accuracy of item and person parameter estimates. For the standard 3 parameter logistic model, for example, these parameters include the item parameters of difficulty, discrimination, and pseudo-chance, as well as the person ability parameter. Several factors impact…
Descriptors: Item Response Theory, Accuracy, Test Items, Difficulty Level
Man, Kaiwen; Harring, Jeffrey R. – Educational and Psychological Measurement, 2019
With the development of technology-enhanced learning platforms, eye-tracking biometric indicators can be recorded simultaneously with students item responses. In the current study, visual fixation, an essential eye-tracking indicator, is modeled to reflect the degree of test engagement when a test taker solves a set of test questions. Three…
Descriptors: Test Items, Eye Movements, Models, Regression (Statistics)
Luo, Yong; Dimitrov, Dimiter M. – Educational and Psychological Measurement, 2019
Plausible values can be used to either estimate population-level statistics or compute point estimates of latent variables. While it is well known that five plausible values are usually sufficient for accurate estimation of population-level statistics in large-scale surveys, the minimum number of plausible values needed to obtain accurate latent…
Descriptors: Item Response Theory, Monte Carlo Methods, Markov Processes, Outcome Measures
Fox, Jean-Paul; Marianti, Sukaesi – Journal of Educational Measurement, 2017
Response accuracy and response time data can be analyzed with a joint model to measure ability and speed of working, while accounting for relationships between item and person characteristics. In this study, person-fit statistics are proposed for joint models to detect aberrant response accuracy and/or response time patterns. The person-fit tests…
Descriptors: Accuracy, Reaction Time, Statistics, Test Items
Zaidi, Nikki L.; Swoboda, Christopher M.; Kelcey, Benjamin M.; Manuel, R. Stephen – Advances in Health Sciences Education, 2017
The extant literature has largely ignored a potentially significant source of variance in multiple mini-interview (MMI) scores by "hiding" the variance attributable to the sample of attributes used on an evaluation form. This potential source of hidden variance can be defined as rating items, which typically comprise an MMI evaluation…
Descriptors: Interviews, Scores, Generalizability Theory, Monte Carlo Methods