Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 14 |
Since 2016 (last 10 years) | 21 |
Since 2006 (last 20 years) | 21 |
Descriptor
Learning Analytics | 21 |
Models | 21 |
Student Behavior | 21 |
Prediction | 11 |
Foreign Countries | 9 |
Electronic Learning | 8 |
Academic Achievement | 5 |
Online Courses | 5 |
College Students | 4 |
Computer Science Education | 4 |
Interaction | 4 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 17 |
Reports - Research | 15 |
Books | 2 |
Collected Works - General | 2 |
Dissertations/Theses -… | 2 |
Reports - Descriptive | 2 |
Education Level
Higher Education | 11 |
Postsecondary Education | 11 |
Elementary Education | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Students | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 1 |
What Works Clearinghouse Rating
Xia, Xiaona; Qi, Wanxue – International Journal of Educational Technology in Higher Education, 2023
The temporal sequence of learning behavior is multidimensional and continuous in MOOCs. On the one hand, it supports personalized learning methods, achieves flexible time and space. On the other hand, it also makes MOOCs produce a large number of dropouts and incomplete learning behaviors. Dropout prediction and decision feedback have become an…
Descriptors: MOOCs, Dropouts, Prediction, Decision Making
Du, Xiaoming; Ge, Shilun; Wang, Nianxin – International Journal of Information and Communication Technology Education, 2022
In the context of education big data, it uses data mining and learning analysis technology to accurately predict and effectively intervene in learning. It is helpful to realize individualized teaching and individualized teaching. This research analyzes student life behavior data and learning behavior data. A model of student behavior…
Descriptors: Prediction, Data, Student Behavior, Academic Achievement
Singelmann, Lauren Nichole – ProQuest LLC, 2022
To meet the national and international call for creative and innovative engineers, many engineering departments and classrooms are striving to create more authentic learning spaces where students are actively engaging with design and innovation activities. For example, one model for teaching innovation is Innovation-Based Learning (IBL) where…
Descriptors: Engineering Education, Design, Educational Innovation, Models
Ean Teng Khor; Dave Darshan – International Journal of Information and Learning Technology, 2024
Purpose: This study leverages social network analysis (SNA) to visualise the way students interacted with online resources and uses the data obtained from SNA as features for supervised machine learning algorithms to predict whether a student will successfully complete a course. Design/methodology/approach: The exploration and visualisation of the…
Descriptors: Prediction, Academic Achievement, Electronic Learning, Artificial Intelligence
Denis Zhidkikh; Ville Heilala; Charlotte Van Petegem; Peter Dawyndt; Miitta Jarvinen; Sami Viitanen; Bram De Wever; Bart Mesuere; Vesa Lappalainen; Lauri Kettunen; Raija Hämäläinen – Journal of Learning Analytics, 2024
Predictive learning analytics has been widely explored in educational research to improve student retention and academic success in an introductory programming course in computer science (CS1). General-purpose and interpretable dropout predictions still pose a challenge. Our study aims to reproduce and extend the data analysis of a privacy-first…
Descriptors: Learning Analytics, Prediction, School Holding Power, Academic Achievement
Mutimukwe, Chantal; Viberg, Olga; Oberg, Lena-Maria; Cerratto-Pargman, Teresa – British Journal of Educational Technology, 2022
Understanding students' privacy concerns is an essential first step toward effective privacy-enhancing practices in learning analytics (LA). In this study, we develop and validate a model to explore the students' privacy concerns (SPICE) regarding LA practice in higher education. The SPICE model considers "privacy concerns" as a central…
Descriptors: Privacy, Learning Analytics, Student Attitudes, College Students
Mohd Fazil; Angelica Rísquez; Claire Halpin – Journal of Learning Analytics, 2024
Technology-enhanced learning supported by virtual learning environments (VLEs) facilitates tutors and students. VLE platforms contain a wealth of information that can be used to mine insight regarding students' learning behaviour and relationships between behaviour and academic performance, as well as to model data-driven decision-making. This…
Descriptors: Learning Analytics, Learning Management Systems, Learning Processes, Decision Making
Tzeng, Jian-Wei; Lee, Chia-An; Huang, Nen-Fu; Huang, Hao-Hsuan; Lai, Chin-Feng – International Review of Research in Open and Distributed Learning, 2022
Massive open online courses (MOOCs) are open access, Web-based courses that enroll thousands of students. MOOCs deliver content through recorded video lectures, online readings, assessments, and both student-student and student-instructor interactions. Course designers have attempted to evaluate the experiences of MOOC participants, though due to…
Descriptors: Online Courses, Models, Learning Analytics, Artificial Intelligence
Pei, Bo; Xing, Wanli – Journal of Educational Computing Research, 2022
This paper introduces a novel approach to identify at-risk students with a focus on output interpretability through analyzing learning activities at a finer granularity on a weekly basis. Specifically, this approach converts the predicted output from the former weeks into meaningful probabilities to infer the predictions in the current week for…
Descriptors: At Risk Students, Learning Analytics, Information Retrieval, Models
Ramos, David Brito; Ramos, Ilmara Monteverde Martins; Gasparini, Isabela; Teixeira de Oliveira, Elaine Harada – International Journal of Distance Education Technologies, 2021
This work presents a new approach to the learning path model in e-learning systems. The model uses data from the database records from an e-learning system and uses graphs as representation. In this work, the authors show how the model can be used to represent visually the learning paths, behavior analysis, help to suggest group formation for…
Descriptors: Electronic Learning, Models, Graphs, Integrated Learning Systems
Patel, Nirmal; Sharma, Aditya; Shah, Tirth; Lomas, Derek – Journal of Educational Data Mining, 2021
Process Analysis is an emerging approach to discover meaningful knowledge from temporal educational data. The study presented in this paper shows how we used Process Analysis methods on the National Assessment of Educational Progress (NAEP) test data for modeling and predicting student test-taking behavior. Our process-oriented data exploration…
Descriptors: Learning Analytics, National Competency Tests, Evaluation Methods, Prediction
Moubayed, Abdallah; Injadat, Mohammadnoor; Shami, Abdallah; Lutfiyya, Hanan – American Journal of Distance Education, 2020
E-learning platforms and processes face several challenges, among which is the idea of personalizing the e-learning experience and to keep students motivated and engaged. This work is part of a larger study that aims to tackle these two challenges using a variety of machine learning techniques. To that end, this paper proposes the use of k-means…
Descriptors: Learner Engagement, Electronic Learning, Individualized Instruction, Undergraduate Students
Varun Mandalapu – ProQuest LLC, 2021
Educational data mining focuses on exploring increasingly large-scale data from educational settings, such as Learning Management Systems (LMS), and developing computational methods to understand students' behaviors and learning settings better. There has been a multitude of research dedicated to studying the student learning process, leading to…
Descriptors: Models, Student Behavior, Learning Management Systems, Data Use
Paquette, Luc; Baker, Ryan S. – Interactive Learning Environments, 2019
Learning analytics research has used both knowledge engineering and machine learning methods to model student behaviors within the context of digital learning environments. In this paper, we compare these two approaches, as well as a hybrid approach combining the two types of methods. We illustrate the strengths of each approach in the context of…
Descriptors: Comparative Analysis, Student Behavior, Models, Case Studies
Archer, Elizabeth; Prinsloo, Paul – Assessment & Evaluation in Higher Education, 2020
Assessment and learning analytics both collect, analyse and use student data, albeit different types of data and to some extent, for various purposes. Based on the data collected and analysed, learning analytics allow for decisions to be made not only with regard to evaluating progress in achieving learning outcomes but also evaluative judgments…
Descriptors: Learning Analytics, Student Evaluation, Educational Objectives, Student Behavior
Previous Page | Next Page »
Pages: 1 | 2