NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 10 results Save | Export
Jing Lu; Chun Wang; Ningzhong Shi – Grantee Submission, 2023
In high-stakes, large-scale, standardized tests with certain time limits, examinees are likely to engage in either one of the three types of behavior (e.g., van der Linden & Guo, 2008; Wang & Xu, 2015): solution behavior, rapid guessing behavior, and cheating behavior. Oftentimes examinees do not always solve all items due to various…
Descriptors: High Stakes Tests, Standardized Tests, Guessing (Tests), Cheating
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lang, Charles – Journal of Learning Analytics, 2014
This article proposes a coherent framework for the use of Inverse Bayesian estimation to summarize and make predictions about student behaviour in adaptive educational settings. The Inverse Bayes Filter utilizes Bayes theorem to estimate the relative impact of contextual factors and internal student factors on student performance using time series…
Descriptors: Bayesian Statistics, Academic Achievement, Prediction, Student Behavior
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Galyardt, April; Goldin, Ilya – Journal of Educational Data Mining, 2015
In educational technology and learning sciences, there are multiple uses for a predictive model of whether a student will perform a task correctly or not. For example, an intelligent tutoring system may use such a model to estimate whether or not a student has mastered a skill. We analyze the significance of data recency in making such…
Descriptors: Achievement Rating, Performance Based Assessment, Bayesian Statistics, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sabourin, Jennifer L.; Rowe, Jonathan P.; Mott, Bradford W.; Lester, James C. – Journal of Educational Data Mining, 2013
Over the past decade, there has been growing interest in real-time assessment of student engagement and motivation during interactions with educational software. Detecting symptoms of disengagement, such as off-task behavior, has shown considerable promise for understanding students' motivational characteristics during learning. In this paper, we…
Descriptors: Student Behavior, Classification, Learner Engagement, Data Analysis
Rai, Dovan; Gong, Yue; Beck, Joseph E. – International Working Group on Educational Data Mining, 2009
Student modeling is a widely used approach to make inference about a student's attributes like knowledge, learning, etc. If we wish to use these models to analyze and better understand student learning there are two problems. First, a model's ability to predict student performance is at best weakly related to the accuracy of any one of its…
Descriptors: Data Analysis, Statistical Analysis, Probability, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Garcia, Patricio; Amandi, Analia; Schiaffino, Silvia; Campo, Marcelo – Computers & Education, 2007
Students are characterized by different learning styles, focusing on different types of information and processing this information in different ways. One of the desirable characteristics of a Web-based education system is that all the students can learn despite their different learning styles. To achieve this goal we have to detect how students…
Descriptors: Student Behavior, Internet, Web Based Instruction, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Peer reviewed Peer reviewed
Direct linkDirect link
Xenos, Michalis – Computers and Education, 2004
This paper presents a methodological approach based on Bayesian Networks for modelling the behaviour of the students of a bachelor course in computers in an Open University that deploys distance educational methods. It describes the structure of the model, its application for modelling the behaviour of student groups in the Informatics Course of…
Descriptors: Prediction, Student Behavior, Open Education, Distance Education
Barnes, Tiffany, Ed.; Desmarais, Michel, Ed.; Romero, Cristobal, Ed.; Ventura, Sebastian, Ed. – International Working Group on Educational Data Mining, 2009
The Second International Conference on Educational Data Mining (EDM2009) was held at the University of Cordoba, Spain, on July 1-3, 2009. EDM brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large data sets to answer educational research questions. The increase in instrumented…
Descriptors: Data Analysis, Educational Research, Conferences (Gatherings), Foreign Countries