NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Showing 1 to 15 of 548 results Save | Export
Kenneth Tyler Wilcox; Ross Jacobucci; Zhiyong Zhang; Brooke A. Ammerman – Grantee Submission, 2023
Text is a burgeoning data source for psychological researchers, but little methodological research has focused on adapting popular modeling approaches for text to the context of psychological research. One popular measurement model for text, topic modeling, uses a latent mixture model to represent topics underlying a body of documents. Recently,…
Descriptors: Bayesian Statistics, Content Analysis, Undergraduate Students, Self Destructive Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Roy Levy; Daniel McNeish – Journal of Educational and Behavioral Statistics, 2025
Research in education and behavioral sciences often involves the use of latent variable models that are related to indicators, as well as related to covariates or outcomes. Such models are subject to interpretational confounding, which occurs when fitting the model with covariates or outcomes alters the results for the measurement model. This has…
Descriptors: Models, Statistical Analysis, Measurement, Data Interpretation
Peer reviewed Peer reviewed
Direct linkDirect link
Bloome, Deirdre; Schrage, Daniel – Sociological Methods & Research, 2021
Causal analyses typically focus on average treatment effects. Yet for substantive research on topics like inequality, interest extends to treatments' distributional consequences. When individuals differ in their responses to treatment, three types of inequality may result. Treatment may shape inequalities between subgroups defined by pretreatment…
Descriptors: Regression (Statistics), Outcomes of Treatment, Statistical Analysis, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Chunhua Cao; Yan Wang; Eunsook Kim – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Multilevel factor mixture modeling (FMM) is a hybrid of multilevel confirmatory factor analysis (CFA) and multilevel latent class analysis (LCA). It allows researchers to examine population heterogeneity at the within level, between level, or both levels. This tutorial focuses on explicating the model specification of multilevel FMM that considers…
Descriptors: Hierarchical Linear Modeling, Factor Analysis, Nonparametric Statistics, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Il Do Ha – Measurement: Interdisciplinary Research and Perspectives, 2024
Recently, deep learning has become a pervasive tool in prediction problems for structured and/or unstructured big data in various areas including science and engineering. In particular, deep neural network models (i.e. a basic core model of deep learning) can be viewed as an extension of statistical models by going through the incorporation of…
Descriptors: Artificial Intelligence, Statistical Analysis, Models, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Doran, Harold – Journal of Educational and Behavioral Statistics, 2023
This article is concerned with a subset of numerically stable and scalable algorithms useful to support computationally complex psychometric models in the era of machine learning and massive data. The subset selected here is a core set of numerical methods that should be familiar to computational psychometricians and considers whitening transforms…
Descriptors: Scaling, Algorithms, Psychometrics, Computation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kane, Michael T.; Mroch, Andrew A. – ETS Research Report Series, 2020
Ordinary least squares (OLS) regression and orthogonal regression (OR) address different questions and make different assumptions about errors. The OLS regression of Y on X yields predictions of a dependent variable (Y) contingent on an independent variable (X) and minimizes the sum of squared errors of prediction. It assumes that the independent…
Descriptors: Regression (Statistics), Least Squares Statistics, Test Bias, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Bosman, Lisa; Soto, Esteban; Varela, Thaís Ferraz; Wollega, Ebisa – Teaching Statistics: An International Journal for Teachers, 2023
Statistical knowledge is required for students in a range of disciplines. However, there are limited educator resources that exist for applying statistics to solve real-world problems. This investigation provides one approach to teaching statistics using entrepreneurial-minded learning (as a way to connect real-world applications and value…
Descriptors: Statistics Education, Introductory Courses, Problem Solving, Entrepreneurship
Peer reviewed Peer reviewed
Direct linkDirect link
Vembye, Mikkel Helding; Pustejovsky, James Eric; Pigott, Therese Deocampo – Journal of Educational and Behavioral Statistics, 2023
Meta-analytic models for dependent effect sizes have grown increasingly sophisticated over the last few decades, which has created challenges for a priori power calculations. We introduce power approximations for tests of average effect sizes based upon several common approaches for handling dependent effect sizes. In a Monte Carlo simulation, we…
Descriptors: Meta Analysis, Robustness (Statistics), Statistical Analysis, Models
Christopher Martin Amissah – ProQuest LLC, 2024
Measurement of latent constructs is one of the most challenging tasks in psychological research. Unlike physical variables, latent constructs are not directly observable but are inferred through individuals' responses to a set of items often referred to as measurement instruments, tests, surveys, or assessments. For decades, exploratory factor…
Descriptors: Models, Psychological Studies, Replication (Evaluation), Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Blozis, Shelley A.; Harring, Jeffrey R. – Sociological Methods & Research, 2021
Nonlinear mixed-effects models are models in which one or more coefficients of the growth model enter in a nonlinear manner, such as appearing in the exponent of the growth function. In their applications, the within-individual residuals are often assumed to be independent with constant variance across time, an assumption that implies that the…
Descriptors: Statistical Analysis, Models, Computation, Goodness of Fit
Andrew Gelman; Matthijs Vákár – Grantee Submission, 2021
It is not always clear how to adjust for control data in causal inference, balancing the goals of reducing bias and variance. We show how, in a setting with repeated experiments, Bayesian hierarchical modeling yields an adaptive procedure that uses the data to determine how much adjustment to perform. The result is a novel analysis with increased…
Descriptors: Bayesian Statistics, Statistical Analysis, Efficiency, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Bouchet-Valat, Milan – Sociological Methods & Research, 2022
Notwithstanding a large body of literature on log-linear models and odds ratios, no general marginal-free index of the association in a contingency table has gained a wide acceptance. Building on a framework developed by L. A. Goodman, we put into light the direct links between odds ratios, the Altham index, the intrinsic association coefficient,…
Descriptors: Statistical Analysis, Tables (Data), Models, Foreign Countries
Lauren Kennedy; Andrew Gelman – Grantee Submission, 2021
Psychology research often focuses on interactions, and this has deep implications for inference from non-representative samples. For the goal of estimating average treatment effects, we propose to fit a model allowing treatment to interact with background variables and then average over the distribution of these variables in the population. This…
Descriptors: Models, Generalization, Psychological Studies, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Ning, Ling; Luo, Wen – Journal of Experimental Education, 2018
Piecewise GMM with unknown turning points is a new procedure to investigate heterogeneous subpopulations' growth trajectories consisting of distinct developmental phases. Unlike the conventional PGMM, which relies on theory or experiment design to specify turning points a priori, the new procedure allows for an optimal location of turning points…
Descriptors: Statistical Analysis, Models, Classification, Comparative Analysis
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  37