Publication Date
In 2025 | 2 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 13 |
Since 2016 (last 10 years) | 73 |
Since 2006 (last 20 years) | 206 |
Descriptor
Models | 412 |
Statistical Analysis | 412 |
Data Analysis | 188 |
Tables (Data) | 115 |
Research Methodology | 82 |
Data Collection | 74 |
Foreign Countries | 63 |
Comparative Analysis | 51 |
Evaluation Methods | 51 |
Higher Education | 45 |
Predictor Variables | 45 |
More ▼ |
Source
Author
Publication Type
Education Level
Location
Australia | 9 |
Canada | 9 |
California | 8 |
Illinois | 6 |
Texas | 5 |
United Kingdom (England) | 5 |
China | 4 |
Sweden | 4 |
Turkey | 4 |
United States | 4 |
Florida | 3 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Braun, Henry – International Journal of Educational Methodology, 2021
This article introduces the concept of the carrying capacity of data (CCD), defined as an integrated, evaluative judgment of the credibility of specific data-based inferences, informed by quantitative and qualitative analyses, leavened by experience. The sequential process of evaluating the CCD is represented schematically by a framework that can…
Descriptors: Data Use, Social Sciences, Data Analysis, Data Interpretation
Lihan Chen; Milica Miocevic; Carl F. Falk – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data pooling is a powerful strategy in empirical research. However, combining multiple datasets often results in a large amount of missing data, as variables that are not present in some datasets effectively contain missing values for all participants in those datasets. Furthermore, data pooling typically leads to a mix of continuous and…
Descriptors: Simulation, Factor Analysis, Models, Statistical Analysis
Roy Levy; Daniel McNeish – Journal of Educational and Behavioral Statistics, 2025
Research in education and behavioral sciences often involves the use of latent variable models that are related to indicators, as well as related to covariates or outcomes. Such models are subject to interpretational confounding, which occurs when fitting the model with covariates or outcomes alters the results for the measurement model. This has…
Descriptors: Models, Statistical Analysis, Measurement, Data Interpretation
Chunhua Cao; Yan Wang; Eunsook Kim – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Multilevel factor mixture modeling (FMM) is a hybrid of multilevel confirmatory factor analysis (CFA) and multilevel latent class analysis (LCA). It allows researchers to examine population heterogeneity at the within level, between level, or both levels. This tutorial focuses on explicating the model specification of multilevel FMM that considers…
Descriptors: Hierarchical Linear Modeling, Factor Analysis, Nonparametric Statistics, Statistical Analysis
Il Do Ha – Measurement: Interdisciplinary Research and Perspectives, 2024
Recently, deep learning has become a pervasive tool in prediction problems for structured and/or unstructured big data in various areas including science and engineering. In particular, deep neural network models (i.e. a basic core model of deep learning) can be viewed as an extension of statistical models by going through the incorporation of…
Descriptors: Artificial Intelligence, Statistical Analysis, Models, Algorithms
Ferguson, Sarah L.; Moore, E. Whitney G.; Hull, Darrell M. – International Journal of Behavioral Development, 2020
The present guide provides a practical guide to conducting latent profile analysis (LPA) in the Mplus software system. This guide is intended for researchers familiar with some latent variable modeling but not LPA specifically. A general procedure for conducting LPA is provided in six steps: (a) data inspection, (b) iterative evaluation of models,…
Descriptors: Statistical Analysis, Computer Software, Data Analysis, Goodness of Fit
Rebeckah K. Fussell; Emily M. Stump; N. G. Holmes – Physical Review Physics Education Research, 2024
Physics education researchers are interested in using the tools of machine learning and natural language processing to make quantitative claims from natural language and text data, such as open-ended responses to survey questions. The aspiration is that this form of machine coding may be more efficient and consistent than human coding, allowing…
Descriptors: Physics, Educational Researchers, Artificial Intelligence, Natural Language Processing
Bonifay, Wes – Grantee Submission, 2022
Traditional statistical model evaluation typically relies on goodness-of-fit testing and quantifying model complexity by counting parameters. Both of these practices may result in overfitting and have thereby contributed to the generalizability crisis. The information-theoretic principle of minimum description length addresses both of these…
Descriptors: Statistical Analysis, Models, Goodness of Fit, Evaluation Methods
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2023
Multiple imputation (MI) is a popular method for handling missing data. In education research, it can be challenging to use MI because the data often have a clustered structure that need to be accommodated during MI. Although much research has considered applications of MI in hierarchical data, little is known about its use in cross-classified…
Descriptors: Educational Research, Data Analysis, Error of Measurement, Computation
Larini, Michel; Barthes, Angela – John Wiley & Sons, Inc, 2018
This book presents different data collection and representation techniques: elementary descriptive statistics, confirmatory statistics, multivariate approaches and statistical modeling. It exposes the possibility of giving more robustness to the classical methodologies of education sciences by adding a quantitative approach. The fundamentals of…
Descriptors: Statistical Analysis, Educational Research, Data Collection, Data Processing
Bouchet-Valat, Milan – Sociological Methods & Research, 2022
Notwithstanding a large body of literature on log-linear models and odds ratios, no general marginal-free index of the association in a contingency table has gained a wide acceptance. Building on a framework developed by L. A. Goodman, we put into light the direct links between odds ratios, the Altham index, the intrinsic association coefficient,…
Descriptors: Statistical Analysis, Tables (Data), Models, Foreign Countries
Changpetch, Pannapa; Reid, Moya – Journal of Education for Business, 2021
Based on a statistical analysis, undergraduate business students are shown to prefer classification tree over six other standard data mining techniques. Data were collected over a 4-year period from students taking a data mining course offered at a business university in the US. The principal reason given by students for this preference is that…
Descriptors: Data Analysis, Models, Statistical Analysis, Undergraduate Students
Stemmler, Mark; Heine, Jörg-Henrik – International Journal of Behavioral Development, 2017
Configural frequency analysis and log-linear modeling are presented as person-centered analytic approaches for the analysis of categorical or categorized data in multi-way contingency tables. Person-centered developmental psychology, based on the holistic interactionistic perspective of the Stockholm working group around David Magnusson and Lars…
Descriptors: Classification, Data, Tables (Data), Models
Loy, Adam; Kuiper, Shonda; Chihara, Laura – Journal of Statistics Education, 2019
This article describes a collaborative project across three institutions to develop, implement, and evaluate a series of tutorials and case studies that highlight fundamental tools of data science--such as visualization, data manipulation, and database usage--that instructors at a wide-range of institutions can incorporate into existing statistics…
Descriptors: Undergraduate Study, Data Collection, Data Analysis, Statistics
Shi, Dexin; Lee, Taehun; Fairchild, Amanda J.; Maydeu-Olivares, Alberto – Educational and Psychological Measurement, 2020
This study compares two missing data procedures in the context of ordinal factor analysis models: pairwise deletion (PD; the default setting in Mplus) and multiple imputation (MI). We examine which procedure demonstrates parameter estimates and model fit indices closer to those of complete data. The performance of PD and MI are compared under a…
Descriptors: Factor Analysis, Statistical Analysis, Computation, Goodness of Fit