NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20260
Since 20250
Since 2022 (last 5 years)0
Since 2017 (last 10 years)6
Since 2007 (last 20 years)23
Audience
Practitioners1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 31 results Save | Export
Yanagiura, Takeshi – Community College Research Center, Teachers College, Columbia University, 2020
Among community college leaders and others interested in reforms to improve student success, there is growing interest in adopting machine learning (ML) techniques to predict credential completion. However, ML algorithms are often complex and are not readily accessible to practitioners for whom a simpler set of near-term measures may serve as…
Descriptors: Community Colleges, Man Machine Systems, Artificial Intelligence, Prediction
Oswald, Christopher A. – ProQuest LLC, 2019
During the 1990s computers were placed into most educational classrooms; however, they sat underused or not used at all. One reason for this is students lacked the skills to use computers effectively. One set of skills that can help students make use of computers is self-regulated learning. By using think aloud protocol analysis while students…
Descriptors: Protocol Analysis, Learning Processes, Self Management, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Ames, Allison; Myers, Aaron – Educational Measurement: Issues and Practice, 2019
Drawing valid inferences from modern measurement models is contingent upon a good fit of the data to the model. Violations of model-data fit have numerous consequences, limiting the usefulness and applicability of the model. As Bayesian estimation is becoming more common, understanding the Bayesian approaches for evaluating model-data fit models…
Descriptors: Bayesian Statistics, Psychometrics, Models, Predictive Measurement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Almeda, Ma. Victoria; Zuech, Joshua; Utz, Chris; Higgins, Greg; Reynolds, Rob; Baker, Ryan S. – Online Learning, 2018
Online education continues to become an increasingly prominent part of higher education, but many students struggle in distance courses. For this reason, there has been considerable interest in predicting which students will succeed in online courses and which will receive poor grades or drop out prior to completion. Effective intervention depends…
Descriptors: Performance Factors, Online Courses, Electronic Learning, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Huang, Liuli; Roche, Lahna R.; Kennedy, Eugene; Brocato, Melissa B. – International Journal of Higher Education, 2017
Many researchers have explored the relationships between the likelihood of graduating from college and demographic and pre-college factors such as gender, race/ethnicity, high school grade point average (GPA), and standardized test scores. However, additional factors such as a student's college major, home address, or use of learning support in…
Descriptors: Graduation Rate, Predictor Variables, Predictive Measurement, Predictive Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Pinder, Jonathan P. – Decision Sciences Journal of Innovative Education, 2014
Business analytics courses, such as marketing research, data mining, forecasting, and advanced financial modeling, have substantial predictive modeling components. The predictive modeling in these courses requires students to estimate and test many linear regressions. As a result, false positive variable selection ("type I errors") is…
Descriptors: Data Collection, Data Analysis, Regression (Statistics), Predictive Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Conijn, Rianne; Snijders, Chris; Kleingeld, Ad; Matzat, Uwe – IEEE Transactions on Learning Technologies, 2017
With the adoption of Learning Management Systems (LMSs) in educational institutions, a lot of data has become available describing students' online behavior. Many researchers have used these data to predict student performance. This has led to a rather diverse set of findings, possibly related to the diversity in courses and predictor variables…
Descriptors: Blended Learning, Predictor Variables, Predictive Validity, Predictive Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Barrett, Jamie D.; Vessey, William B.; Griffith, Jennifer A.; Mracek, Derek; Mumford, Michael D. – Creativity Research Journal, 2014
There is little doubt that career experiences contribute to scientific achievement; however this relationship has yet to be thoroughly investigated in terms the effects on scientific creativity. In this study, a historiometric approach was used to examine 3 areas of adult career experiences common to scientific achievement. In doing so, prior…
Descriptors: Science Achievement, Prediction, Predictor Variables, Correlation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Herrera, Cheryl; Blair, Jennifer – Research in Higher Education Journal, 2015
As the U.S. population ages and policy changes emerge, such as the Patient Protection and Affordable Care Act of 2010, the U.S. will experience a significant shortage of Registered Nurses (RNs). Many colleges and universities are attempting to increase the size of nursing cohorts to respond to this imminent shortage. Notwithstanding a 2.6%…
Descriptors: Prediction, Success, Nursing Education, Nursing Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Olsen, Jennifer K.; Aleven, Vincent; Rummel, Nikol – Grantee Submission, 2015
Student models for adaptive systems may not model collaborative learning optimally. Past research has either focused on modeling individual learning or for collaboration, has focused on group dynamics or group processes without predicting learning. In the current paper, we adjust the Additive Factors Model (AFM), a standard logistic regression…
Descriptors: Educational Environment, Predictive Measurement, Predictor Variables, Cooperative Learning
Olsen, Jennifer K.; Aleven, Vincent; Rummel, Nikol – International Educational Data Mining Society, 2015
Student models for adaptive systems may not model collaborative learning optimally. Past research has either focused on modeling individual learning or for collaboration, has focused on group dynamics or group processes without predicting learning. In the current paper, we adjust the Additive Factors Model (AFM), a standard logistic regression…
Descriptors: Educational Environment, Predictive Measurement, Predictor Variables, Cooperative Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bozick, Robert; Gonzalez, Gabriella; Engberg, John – Journal of Student Financial Aid, 2015
The Pittsburgh Promise is a scholarship program that provides $5,000 per year toward college tuition for public high school graduates in Pittsburgh, Pennsylvania who earned a 2.5 GPA and a 90% attendance record. This study used a difference-in-difference design to assess whether the introduction of the Promise scholarship program directly…
Descriptors: Merit Scholarships, College Bound Students, Enrollment Influences, Enrollment Management
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fernandes Malaquias, Rodrigo; de Oliveira Malaquias, Fernanda Francielle – Turkish Online Journal of Distance Education, 2014
The objective of this study was to validate a scale for assessment of academic projects. As a complement, we examined its predictive ability by comparing the scores of advised/corrected projects based on the model and the final scores awarded to the work by an examining panel (approximately 10 months after the project design). Results of…
Descriptors: Predictive Measurement, Predictive Validity, Predictor Variables, Test Construction
Lin, Jien-Jou – ProQuest LLC, 2013
Every year a group of graduates from high schools enter the engineering programs across this country with remarkable academic record. However, as reported in numerous studies, the number of students switching out of engineering majors continues to be an important issue. Previous studies have suggested various factors as predictors for student…
Descriptors: Success, Prediction, Predictive Measurement, Predictive Validity
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Camilleri, Liberato; Cefai, Carmel – World Journal of Education, 2013
Multiple linear regression and ANOVA models are widely used in applications since they provide effective statistical tools for assessing the relationship between a continuous dependent variable and several predictors. However these models rely heavily on linearity and normality assumptions and they do not accommodate categorical dependent…
Descriptors: Regression (Statistics), Models, Predictor Variables, Predictive Measurement
Previous Page | Next Page ยป
Pages: 1  |  2  |  3