NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wagner, Richard K.; Moxley, Jerad; Schatschneider, Chris; Zirps, Fotena A. – Scientific Studies of Reading, 2023
Purpose: Bayesian-based models for diagnosis are common in medicine but have not been incorporated into identification models for dyslexia. The purpose of the present study was to evaluate Bayesian identification models that included a broader set of predictors and that capitalized on recent developments in modeling the prevalence of dyslexia.…
Descriptors: Bayesian Statistics, Identification, Dyslexia, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Forthmann, Boris; Förster, Natalie; Souvignier, Elmar – Journal of Intelligence, 2022
Monitoring the progress of student learning is an important part of teachers' data-based decision making. One such tool that can equip teachers with information about students' learning progress throughout the school year and thus facilitate monitoring and instructional decision making is learning progress assessments. In practical contexts and…
Descriptors: Learning Processes, Progress Monitoring, Robustness (Statistics), Bayesian Statistics
Kara, Yusuf; Kamata, Akihito; Potgieter, Cornelis; Nese, Joseph F. T. – Educational and Psychological Measurement, 2020
Oral reading fluency (ORF), used by teachers and school districts across the country to screen and progress monitor at-risk readers, has been documented as a good indicator of reading comprehension and overall reading competence. In traditional ORF administration, students are given one minute to read a grade-level passage, after which the…
Descriptors: Oral Reading, Reading Fluency, Reading Rate, Accuracy
Kara, Yusuf; Kamata, Akihito; Potgieter, Cornelis; Nese, Joseph F. T. – Grantee Submission, 2020
Oral reading fluency (ORF), used by teachers and school districts across the country to screen and progress monitor at-risk readers, has been documented as a good indicator of reading comprehension and overall reading competence. In traditional ORF administration, students are given one minute to read a grade-level passage, after which the…
Descriptors: Oral Reading, Reading Fluency, Reading Rate, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Paape, Dario; Avetisyan, Serine; Lago, Sol; Vasishth, Shravan – Cognitive Science, 2021
We present computational modeling results based on a self-paced reading study investigating number attraction effects in Eastern Armenian. We implement three novel computational models of agreement attraction in a Bayesian framework and compare their predictive fit to the data using k-fold cross-validation. We find that our data are better…
Descriptors: Computational Linguistics, Indo European Languages, Grammar, Bayesian Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use