Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 4 |
Descriptor
Author
Barnes, Tiffany | 2 |
Chi, Min | 2 |
Shi, Yang | 2 |
Bart Mesuere | 1 |
Biswas, Gautam | 1 |
Bram De Wever | 1 |
Charlotte Van Petegem | 1 |
Denis Zhidkikh | 1 |
Emara, Mona | 1 |
Grover, Shuchi | 1 |
Hutchins, Nicole M. | 1 |
More ▼ |
Publication Type
Reports - Research | 4 |
Journal Articles | 2 |
Speeches/Meeting Papers | 2 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
High Schools | 1 |
Secondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Denis Zhidkikh; Ville Heilala; Charlotte Van Petegem; Peter Dawyndt; Miitta Jarvinen; Sami Viitanen; Bram De Wever; Bart Mesuere; Vesa Lappalainen; Lauri Kettunen; Raija Hämäläinen – Journal of Learning Analytics, 2024
Predictive learning analytics has been widely explored in educational research to improve student retention and academic success in an introductory programming course in computer science (CS1). General-purpose and interpretable dropout predictions still pose a challenge. Our study aims to reproduce and extend the data analysis of a privacy-first…
Descriptors: Learning Analytics, Prediction, School Holding Power, Academic Achievement
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Mao, Ye; Shi, Yang; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2021
As students learn how to program, both their programming code and their understanding of it evolves over time. In this work, we present a general data-driven approach, named "Temporal-ASTNN" for modeling student learning progression in open-ended programming domains. Temporal-ASTNN combines a novel neural network model based on abstract…
Descriptors: Programming, Computer Science Education, Learning Processes, Learning Analytics
Emara, Mona; Hutchins, Nicole M.; Grover, Shuchi; Snyder, Caitlin; Biswas, Gautam – Journal of Learning Analytics, 2021
The integration of computational modelling in science classrooms provides a unique opportunity to promote key 21st century skills including computational thinking (CT) and collaboration. The open-ended, problem-solving nature of the task requires groups to grapple with the combination of two domains (science and computing) as they collaboratively…
Descriptors: Cooperative Learning, Self Management, Metacognition, Computer Science Education