Publication Date
| In 2026 | 0 |
| Since 2025 | 3 |
| Since 2022 (last 5 years) | 47 |
| Since 2017 (last 10 years) | 99 |
| Since 2007 (last 20 years) | 251 |
Descriptor
| Models | 289 |
| Prediction | 289 |
| Regression (Statistics) | 166 |
| Bayesian Statistics | 96 |
| Statistical Analysis | 51 |
| Comparative Analysis | 49 |
| Foreign Countries | 47 |
| Probability | 47 |
| Accuracy | 45 |
| Academic Achievement | 43 |
| Correlation | 41 |
| More ▼ | |
Source
Author
| Chi, Min | 4 |
| Barnes, Tiffany | 3 |
| Griffiths, Thomas L. | 3 |
| Lee, Michael D. | 3 |
| Mao, Ye | 3 |
| Price, Thomas W. | 3 |
| Aleven, Vincent | 2 |
| Barnes, Tiffany, Ed. | 2 |
| Brunskill, Emma | 2 |
| Culpepper, Steven Andrew | 2 |
| Denisa Gandara | 2 |
| More ▼ | |
Publication Type
Education Level
Location
| Australia | 7 |
| Florida | 4 |
| Massachusetts | 4 |
| North Carolina | 4 |
| Switzerland | 4 |
| Taiwan | 4 |
| Arizona | 3 |
| Germany | 3 |
| Pennsylvania | 3 |
| Spain | 3 |
| United Kingdom (Great Britain) | 3 |
| More ▼ | |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Xia, Xiaona – Interactive Learning Environments, 2023
The research of multi-category learning behaviors is a hot issue in interactive learning environment, and there are many challenges in data statistics and relationship modeling. We select the massive learning behaviors data of multiple periods and courses and study the decision application of regression analysis. First, based on the definition of…
Descriptors: Learning Analytics, Decision Making, Regression (Statistics), Bayesian Statistics
Peer reviewedParian Haghighat; Denisa Gandara; Lulu Kang; Hadis Anahideh – Grantee Submission, 2024
Predictive analytics is widely used in various domains, including education, to inform decision-making and improve outcomes. However, many predictive models are proprietary and inaccessible for evaluation or modification by researchers and practitioners, limiting their accountability and ethical design. Moreover, predictive models are often opaque…
Descriptors: Prediction, Learning Analytics, Multivariate Analysis, Regression (Statistics)
Denisa Gandara; Hadis Anahideh – Society for Research on Educational Effectiveness, 2024
Background/Context: Predictive analytics has emerged as an indispensable tool in the education sector, offering insights that can improve student outcomes and inform more equitable policies (Friedler et al., 2019; Kleinberg et al., 2018). However, the widespread adoption of predictive models is hindered by several challenges, including the lack of…
Descriptors: Prediction, Learning Analytics, Ethics, Statistical Bias
Ugur Sener; Salvatore Joseph Terregrossa – SAGE Open, 2024
The aim of the study is the development of methodology for accurate estimation of electric vehicle demand; which is paramount regarding various aspects of the firms decision-making such as optimal price, production level, and corresponding amounts of capital and labor; as well as supply chain, inventory control, capital financing, and operational…
Descriptors: Motor Vehicles, Artificial Intelligence, Prediction, Regression (Statistics)
Paul A. Jewsbury; J. R. Lockwood; Matthew S. Johnson – Large-scale Assessments in Education, 2025
Many large-scale assessments model proficiency with a latent regression on contextual variables. Item-response data are used to estimate the parameters of the latent variable model and are used in conjunction with the contextual data to generate plausible values of individuals' proficiency attributes. These models typically incorporate numerous…
Descriptors: Item Response Theory, Data Use, Models, Evaluation Methods
Han Du; Brian Keller; Egamaria Alacam; Craig Enders – Grantee Submission, 2023
In Bayesian statistics, the most widely used criteria of Bayesian model assessment and comparison are Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC). A multilevel mediation model is used as an illustrative example to compare different types of DIC and WAIC. More specifically, the study compares the…
Descriptors: Bayesian Statistics, Models, Comparative Analysis, Probability
Guleria, Pratiyush; Sood, Manu – Education and Information Technologies, 2023
Machine Learning concept learns from experiences, inferences and conceives complex queries. Machine learning techniques can be used to develop the educational framework which understands the inputs from students, parents and with intelligence generates the result. The framework integrates the features of Machine Learning (ML), Explainable AI (XAI)…
Descriptors: Artificial Intelligence, Career Counseling, Data Analysis, Employment Potential
Kajal Mahawar; Punam Rattan – Education and Information Technologies, 2025
Higher education institutions have consistently strived to provide students with top-notch education. To achieve better outcomes, machine learning (ML) algorithms greatly simplify the prediction process. ML can be utilized by academicians to obtain insight into student data and mine data for forecasting the performance. In this paper, the authors…
Descriptors: Electronic Learning, Artificial Intelligence, Academic Achievement, Prediction
Jihong Zhang; Jonathan Templin; Xinya Liang – Journal of Educational Measurement, 2024
Recently, Bayesian diagnostic classification modeling has been becoming popular in health psychology, education, and sociology. Typically information criteria are used for model selection when researchers want to choose the best model among alternative models. In Bayesian estimation, posterior predictive checking is a flexible Bayesian model…
Descriptors: Bayesian Statistics, Cognitive Measurement, Models, Classification
Kuroki, Masanori – Journal of Economic Education, 2023
As vast amounts of data have become available in business in recent years, the demand for data scientists has been rising. The author of this article provides a tutorial on how one entry-level machine learning competition from Kaggle, an online community for data scientists, can be integrated into an undergraduate econometrics course as an…
Descriptors: Statistics Education, Teaching Methods, Competition, Prediction
Xing, Wanli; Du, Dongping; Bakhshi, Ali; Chiu, Kuo-Chun; Du, Hanxiang – IEEE Transactions on Learning Technologies, 2021
Predictive modeling in online education is a popular topic in learning analytics research and practice. This study proposes a novel predictive modeling method to improve model transferability over time within the same course and across different courses. The research gaps addressed are limited evidence showing whether a predictive model built on…
Descriptors: Electronic Learning, Bayesian Statistics, Prediction, Models
Thanh Thuy Do; Golnoosh Babaei; Paolo Pagnottoni – Measurement: Interdisciplinary Research and Perspectives, 2024
Complex Machine Learning (ML) models used to support decision-making in peer-to-peer (P2P) lending often lack clear, accurate, and interpretable explanations. While the game-theoretic concept of Shapley values and its computationally efficient variant Kernel SHAP may be employed for this aim, similarly to other existing methods, the latter makes…
Descriptors: Artificial Intelligence, Risk Management, Credit (Finance), Prediction
Kamdjou, Herve D. Teguim – Open Education Studies, 2023
This article revisits the Mincer earnings function and presents comparable estimates of the average monetary returns associated with an additional year of education across different regions worldwide. In contrast to the traditional Ordinary Least Squares (OLS) method commonly employed in the literature, this study applied a cutting-edge approach…
Descriptors: Outcomes of Education, Artificial Intelligence, Human Capital, Regression (Statistics)
Hyemin Han; Kelsie J. Dawson – Journal of Moral Education, 2024
In the present study, we examined how the perceived attainability and relatability of moral exemplars predicted moral elevation and pleasantness among both adult and college student participants. Data collected from two experiments were analyzed with Bayesian multilevel modeling to explore which factors significantly predicted outcome variables at…
Descriptors: Moral Values, Prediction, Models, Behavior Patterns
Mangino, Anthony A.; Smith, Kendall A.; Finch, W. Holmes; Hernández-Finch, Maria E. – Measurement and Evaluation in Counseling and Development, 2022
A number of machine learning methods can be employed in the prediction of suicide attempts. However, many models do not predict new cases well in cases with unbalanced data. The present study improved prediction of suicide attempts via the use of a generative adversarial network.
Descriptors: Prediction, Suicide, Artificial Intelligence, Networks

Direct link
