NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 38 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Joo, Seang-Hwane; Lee, Philseok – Journal of Educational Measurement, 2022
Abstract This study proposes a new Bayesian differential item functioning (DIF) detection method using posterior predictive model checking (PPMC). Item fit measures including infit, outfit, observed score distribution (OSD), and Q1 were considered as discrepancy statistics for the PPMC DIF methods. The performance of the PPMC DIF method was…
Descriptors: Test Items, Bayesian Statistics, Monte Carlo Methods, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Ugur Sener; Salvatore Joseph Terregrossa – SAGE Open, 2024
The aim of the study is the development of methodology for accurate estimation of electric vehicle demand; which is paramount regarding various aspects of the firms decision-making such as optimal price, production level, and corresponding amounts of capital and labor; as well as supply chain, inventory control, capital financing, and operational…
Descriptors: Motor Vehicles, Artificial Intelligence, Prediction, Regression (Statistics)
Davison, Mark L.; Davenport, Ernest C., Jr.; Jia, Hao; Seipel, Ben; Carlson, Sarah E. – Grantee Submission, 2022
A regression model of predictor trade-offs is described. Each regression parameter equals the expected change in Y obtained by trading 1 point from one predictor to a second predictor. The model applies to predictor variables that sum to a constant T for all observations; for example, proportions summing to T=1.0 or percentages summing to T=100…
Descriptors: Regression (Statistics), Prediction, Predictor Variables, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hai Li; Wanli Xing; Chenglu Li; Wangda Zhu; Simon Woodhead – Journal of Learning Analytics, 2025
Knowledge tracing (KT) is a method to evaluate a student's knowledge state (KS) based on their historical problem-solving records by predicting the next answer's binary correctness. Although widely applied to closed-ended questions, it lacks a detailed option tracing (OT) method for assessing multiple-choice questions (MCQs). This paper introduces…
Descriptors: Mathematics Tests, Multiple Choice Tests, Computer Assisted Testing, Problem Solving
Botarleanu, Robert-Mihai; Dascalu, Mihai; Allen, Laura K.; Crossley, Scott Andrew; McNamara, Danielle S. – Grantee Submission, 2022
Automated scoring of student language is a complex task that requires systems to emulate complex and multi-faceted human evaluation criteria. Summary scoring brings an additional layer of complexity to automated scoring because it involves two texts of differing lengths that must be compared. In this study, we present our approach to automate…
Descriptors: Automation, Scoring, Documentation, Likert Scales
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Miao, Dezhuang; Dong, Yu; Lu, Xuesong – International Educational Data Mining Society, 2020
In colleges, programming is increasingly becoming a general education course of almost all STEM majors as well as some art majors, resulting in an emerging demand for scalable programming education. To support scalable education, teaching activities such as grading and feedback have to be automated. Recently, online judge systems have been…
Descriptors: Programming, Prediction, Error Patterns, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Jacobs, Cassandra L.; Cho, Sun-Joo; Watson, Duane G. – Cognitive Science, 2019
Syntactic priming in language production is the increased likelihood of using a recently encountered syntactic structure. In this paper, we examine two theories of why speakers can be primed: error-driven learning accounts (Bock, Dell, Chang, & Onishi, 2007; Chang, Dell, & Bock, 2006) and activation-based accounts (Pickering &…
Descriptors: Priming, Syntax, Prediction, Linguistic Theory
Misato Hiraga – ProQuest LLC, 2024
This dissertation developed a new learner corpus of Japanese and introduced an error and linguistic annotation scheme specifically designed for Japanese particles. The corpus contains texts written by learners who are in the first year to fourth year university level Japanese courses. The texts in the corpus were tagged with part-of-speech and…
Descriptors: Japanese, Computational Linguistics, Form Classes (Languages), Error Analysis (Language)
Peer reviewed Peer reviewed
Direct linkDirect link
Johns, Brendan T.; Mewhort, Douglas J. K.; Jones, Michael N. – Cognitive Science, 2019
Distributional models of semantics learn word meanings from contextual co-occurrence patterns across a large sample of natural language. Early models, such as LSA and HAL (Landauer & Dumais, 1997; Lund & Burgess, 1996), counted co-occurrence events; later models, such as BEAGLE (Jones & Mewhort, 2007), replaced counting co-occurrences…
Descriptors: Semantics, Learning Processes, Models, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Young, Nicholas T.; Caballero, Marcos D. – Journal of Educational Data Mining, 2021
We encounter variables with little variation often in educational data mining (EDM) due to the demographics of higher education and the questions we ask. Yet, little work has examined how to analyze such data. Therefore, we conducted a simulation study using logistic regression, penalized regression, and random forest. We systematically varied the…
Descriptors: Prediction, Models, Learning Analytics, Mathematics
Monica Yin-Chen Li – ProQuest LLC, 2021
There is a general consensus in theories of human speech recognition that humans engage in predictive processing during online speech processing. There are also claims that predictive processing indicates the operation of a predictive coding (PC) mechanism (Rao & Ballard, 1999). Formally, PC is a generative model where top-down signals consist…
Descriptors: Audio Equipment, Speech Communication, Error Patterns, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Lupker, Stephen J.; Spinelli, Giacomo; Davis, Colin J. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2020
A word's exterior letters, particularly its initial letter, appear to have a special status when reading. Therefore, most orthographic coding models incorporate assumptions giving initial letters and, in some cases, final letters, enhanced importance during the orthographic coding process. In the present article, 3 masked priming experiments were…
Descriptors: Alphabets, Reading Processes, Priming, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Daliri, Ayoub – Journal of Speech, Language, and Hearing Research, 2021
Purpose: The speech motor system uses feedforward and feedback control mechanisms that are both reliant on prediction errors. Here, we developed a state-space model to estimate the error sensitivity of the control systems. We examined (a) whether the model accounts for the error sensitivity of the control systems and (b) whether the two systems…
Descriptors: Speech Communication, Psychomotor Skills, Prediction, Error Patterns
Botarleanu, Robert-Mihai; Dascalu, Mihai; Watanabe, Micah; Crossley, Scott Andrew; McNamara, Danielle S. – Grantee Submission, 2022
Age of acquisition (AoA) is a measure of word complexity which refers to the age at which a word is typically learned. AoA measures have shown strong correlations with reading comprehension, lexical decision times, and writing quality. AoA scores based on both adult and child data have limitations that allow for error in measurement, and increase…
Descriptors: Age Differences, Vocabulary Development, Correlation, Reading Comprehension
Peer reviewed Peer reviewed
Direct linkDirect link
Kalbe, Felix; Schwabe, Lars – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2020
Stimuli encoded shortly before an aversive event are typically well remembered. Traditionally, this emotional memory enhancement has been attributed to beneficial effects of physiological arousal on memory formation. Here, we proposed an additional mechanism and tested whether memory formation is driven by the unpredictable nature of aversive…
Descriptors: Prediction, Memory, Fear, Conditioning
Previous Page | Next Page »
Pages: 1  |  2  |  3