Publication Date
| In 2026 | 0 |
| Since 2025 | 4 |
| Since 2022 (last 5 years) | 39 |
| Since 2017 (last 10 years) | 90 |
| Since 2007 (last 20 years) | 162 |
Descriptor
| Data Analysis | 180 |
| Models | 180 |
| Prediction | 180 |
| Foreign Countries | 46 |
| Academic Achievement | 35 |
| College Students | 35 |
| Data Collection | 34 |
| Artificial Intelligence | 31 |
| At Risk Students | 29 |
| Student Behavior | 27 |
| Classification | 26 |
| More ▼ | |
Source
Author
| Baker, Ryan S. | 4 |
| Barnes, Tiffany, Ed. | 3 |
| Brusilovsky, Peter | 2 |
| Bulathwela, Sahan | 2 |
| Chen, Fu | 2 |
| Cui, Ying | 2 |
| Desmarais, Michel, Ed. | 2 |
| Dillenbourg, Pierre | 2 |
| Dougherty, Michael R. | 2 |
| Feng, Mingyu, Ed. | 2 |
| Gross, Markus | 2 |
| More ▼ | |
Publication Type
Education Level
Audience
Location
| Germany | 6 |
| Australia | 5 |
| Brazil | 5 |
| Massachusetts | 4 |
| Pennsylvania | 4 |
| Turkey | 4 |
| United Kingdom | 4 |
| United Kingdom (England) | 4 |
| California | 3 |
| Canada | 3 |
| China | 3 |
| More ▼ | |
Laws, Policies, & Programs
| Higher Education Act Title IV | 1 |
Assessments and Surveys
| Program for International… | 4 |
| Massachusetts Comprehensive… | 1 |
| National Assessment of… | 1 |
| Teaching and Learning… | 1 |
| Trends in International… | 1 |
What Works Clearinghouse Rating
Frank Lee; Alex Algarra – Information Systems Education Journal, 2025
This case study examines employee attrition, its detrimental effects on businesses, and the potential of data analytics to address this challenge. By employing Latent Dirichlet Allocation (LDA), a sophisticated NLP technique, we delve into the underlying reasons for employee departures. Additionally, we explore using RapidMiner to develop…
Descriptors: Labor Turnover, Data Analysis, Natural Language Processing, Employees
Mahmoud Abdasalam; Ahmad Alzubi; Kolawole Iyiola – Education and Information Technologies, 2025
This study introduces an optimized ensemble deep neural network (Optimized Ensemble Deep-NN) to enhance the accuracy of predicting student grades. This model solves the problem of different and complicated student performance data by using deep neural networks, ensemble learning, and a number of optimization algorithms, such as Adam, SGD, and RMS…
Descriptors: Grades (Scholastic), Prediction, Accuracy, Artificial Intelligence
Venera Nakhipova; Yerzhan Kerimbekov; Zhanat Umarova; Halil ibrahim Bulbul; Laura Suleimenova; Elvira Adylbekova – International Journal of Information and Communication Technology Education, 2024
This article introduces a novel method that integrates collaborative filtering into the naive Bayes model to enhance predicting student academic performance. The combined approach leverages collaborative user behavior analysis and probabilistic modeling, showing promising results in improved prediction precision. Collaborative Filtering explores…
Descriptors: Academic Achievement, Prediction, Cooperation, Behavior
Yikai Lu; Lingbo Tong; Ying Cheng – Journal of Educational Data Mining, 2024
Knowledge tracing aims to model and predict students' knowledge states during learning activities. Traditional methods like Bayesian Knowledge Tracing (BKT) and logistic regression have limitations in granularity and performance, while deep knowledge tracing (DKT) models often suffer from lacking transparency. This paper proposes a…
Descriptors: Models, Intelligent Tutoring Systems, Prediction, Knowledge Level
Napol Rachatasumrit; Paulo F. Carvalho; Kenneth R. Koedinger – International Educational Data Mining Society, 2024
What does it mean for a model to be a better model? One conceptualization, indeed a common one in Educational Data Mining, is that a better model is the one that fits the data better, that is, higher prediction accuracy. However, oftentimes, models that maximize prediction accuracy do not provide meaningful parameter estimates, making them less…
Descriptors: Data Analysis, Models, Prediction, Accuracy
Jade Mai Cock; Hugues Saltini; Haoyu Sheng; Riya Ranjan; Richard Davis; Tanja Käser – International Educational Data Mining Society, 2024
Predictive models play a pivotal role in education by aiding learning, teaching, and assessment processes. However, they have the potential to perpetuate educational inequalities through algorithmic biases. This paper investigates how behavioral differences across demographic groups of different sizes propagate through the student success modeling…
Descriptors: Demography, Statistical Bias, Algorithms, Behavior
Kelli Bird – Association for Institutional Research, 2023
Colleges are increasingly turning to predictive analytics to identify "at-risk" students in order to target additional supports. While recent research demonstrates that the types of prediction models in use are reasonably accurate at identifying students who will eventually succeed or not, there are several other considerations for the…
Descriptors: Prediction, Data Analysis, Artificial Intelligence, Identification
Lu, Yu; Wang, Deliang; Chen, Penghe; Meng, Qinggang; Yu, Shengquan – International Journal of Artificial Intelligence in Education, 2023
As a prominent aspect of modeling learners in the education domain, knowledge tracing attempts to model learner's cognitive process, and it has been studied for nearly 30 years. Driven by the rapid advancements in deep learning techniques, deep neural networks have been recently adopted for knowledge tracing and have exhibited unique advantages…
Descriptors: Learning Processes, Artificial Intelligence, Intelligent Tutoring Systems, Data Analysis
Majdi Beseiso – TechTrends: Linking Research and Practice to Improve Learning, 2025
Predicting students' success is crucial in educational settings to improve academic performance and prevent dropouts. This study aimed to improve student performance prediction by combining advanced machine learning (ML) approaches. Convolutional Neural Networks (CNNs) and attention mechanisms were used for extracting relevant features from…
Descriptors: Prediction, Success, Academic Achievement, Artificial Intelligence
Seo, Michael; Furukawa, Toshi A.; Karyotaki, Eirini; Efthimiou, Orestis – Research Synthesis Methods, 2023
Clinical prediction models are widely used in modern clinical practice. Such models are often developed using individual patient data (IPD) from a single study, but often there are IPD available from multiple studies. This allows using meta-analytical methods for developing prediction models, increasing power and precision. Different studies,…
Descriptors: Prediction, Models, Patients, Data Analysis
Narjes Rohani; Behnam Rohani; Areti Manataki – Journal of Educational Data Mining, 2024
The prediction of student performance and the analysis of students' learning behaviour play an important role in enhancing online courses. By analysing a massive amount of clickstream data that captures student behaviour, educators can gain valuable insights into the factors that influence students' academic outcomes and identify areas of…
Descriptors: Mathematics Education, Models, Prediction, Knowledge Level
Achmad Bisri; Supardi; Yayu Heryatun; Hunainah; Annisa Navira – Journal of Education and Learning (EduLearn), 2025
In the educational landscape, educational data mining has emerged as an indispensable tool for institutions seeking to deliver exceptional and high-quality education. However, education data revealed suboptimal academic performance among a significant portion of the student population, which consequently resulted in delayed graduation. This…
Descriptors: Data Analysis, Models, Academic Achievement, Evaluation Methods
Khan, Anupam; Ghosh, Soumya K. – Education and Information Technologies, 2021
Student performance modelling is one of the challenging and popular research topics in educational data mining (EDM). Multiple factors influence the performance in non-linear ways; thus making this field more attractive to the researchers. The widespread availability of educational datasets further catalyse this interestingness, especially in…
Descriptors: Academic Achievement, Prediction, Data Analysis, Meta Analysis
Keeanna Jessica Marie Warren – ProQuest LLC, 2022
Teacher turnover continues to be a significant problem in the United States. Teacher turnover is expensive because it costs money to continue recruiting, hiring, and training new teachers to replace those leaving (Carver-Thomas & Darling-Hammond, 2017). Most important though, teacher turnover hurts student achievement and success (Sorensen…
Descriptors: Data Analysis, Prediction, Teacher Persistence, Faculty Mobility
Aswani Yaramala; Soheila Farokhi; Hamid Karimi – International Educational Data Mining Society, 2024
This paper presents an in-depth analysis of student behavior and score prediction in the ASSISTments online learning platform. We address four research questions related to the impact of tutoring materials, skill mastery, feature extraction, and graph representation learning. To investigate the impact of tutoring materials, we analyze the…
Descriptors: Student Behavior, Scores, Prediction, Electronic Learning

Peer reviewed
Direct link
