NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 18 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sghir, Nabila; Adadi, Amina; Lahmer, Mohammed – Education and Information Technologies, 2023
The last few years have witnessed an upsurge in the number of studies using Machine and Deep learning models to predict vital academic outcomes based on different kinds and sources of student-related data, with the goal of improving the learning process from all perspectives. This has led to the emergence of predictive modelling as a core practice…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Dragos-Georgian Corlatescu; Micah Watanabe; Stefan Ruseti; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Modeling reading comprehension processes is a critical task for Learning Analytics, as accurate models of the reading process can be used to match students to texts, identify appropriate interventions, and predict learning outcomes. This paper introduces an improved version of the Automated Model of Comprehension, namely version 4.0. AMoC has its…
Descriptors: Computer Software, Artificial Intelligence, Learning Analytics, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Khalid Alalawi; Rukshan Athauda; Raymond Chiong; Ian Renner – Education and Information Technologies, 2025
Learning analytics intervention (LAI) studies aim to identify at-risk students early during an academic term using predictive models and facilitate educators to provide effective interventions to improve educational outcomes. A major impediment to the uptake of LAI is the lack of access to LAI infrastructure by educators to pilot LAI, which…
Descriptors: Intervention, Learning Analytics, Guidelines, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Zheng, Lanqin; Niu, Jiayu; Zhong, Lu – British Journal of Educational Technology, 2022
Learning analytics (LA) has been widely adopted in research on education. However, most studies in the area have conducted LA after computer-supported collaborative learning (CSCL) activities rather than during CSCL. To address this problem, this study proposed a LA-based real-time feedback approach based on a deep neural network model to improve…
Descriptors: Learning Analytics, Feedback (Response), Outcomes of Education, Cooperative Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Armatas, Christine; Kwong, Theresa; Chun, Cecilia; Spratt, Christine; Chan, Dick; Kwan, Joanna – Technology, Knowledge and Learning, 2022
The application of learning analytics (LA) to research and practice in higher education is expanding. Researchers and practitioners are using LA to provide an evidentiary basis across higher education to investigate student learning, to drive institutional quality improvement strategies, to determine at-risk behaviours and develop intervention…
Descriptors: Learning Analytics, Higher Education, Foreign Countries, Curriculum Evaluation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tobias Alexander Bang Tretow-Fish; Md. Saifuddin Khalid – Electronic Journal of e-Learning, 2023
This research paper highlights and addresses the lack of a systematic review of the methods used to evaluate Learning Analytics (LA) and Learning Analytics Dashboards (LAD) of Adaptive Learning Platforms (ALPs) in the current literature. Addressing this gap, the authors built upon the work of Tretow-Fish and Khalid (2022) and analyzed 32 papers,…
Descriptors: Learning Analytics, Evaluation Methods, Usability, Design
Peer reviewed Peer reviewed
Direct linkDirect link
Tanjea Ane; Tabatshum Nepa – Research on Education and Media, 2024
Precision education derives teaching and learning opportunities by customizing predictive rules in educational methods. Innovative educational research faces new challenges and affords state-of-the-art methods to trace knowledge between the teaching and learning ecosystem. Individual intelligence can only be captured through knowledge level…
Descriptors: Artificial Intelligence, Prediction, Models, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Ean Teng Khor; Dave Darshan – International Journal of Information and Learning Technology, 2024
Purpose: This study leverages social network analysis (SNA) to visualise the way students interacted with online resources and uses the data obtained from SNA as features for supervised machine learning algorithms to predict whether a student will successfully complete a course. Design/methodology/approach: The exploration and visualisation of the…
Descriptors: Prediction, Academic Achievement, Electronic Learning, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wang, Han; Huang, Tao; Tian, Jun; Yang, Huali; Han, Pengdong – Best Evidence in Chinese Education, 2022
In the age of Internet Plus, the deep integration of information technology into education and individualized instruction have become a growing trend in education development. Self-regulated learning is a key element of student core competence, but easy to be overlooked in basic education. The purpose of this study is to establish the data…
Descriptors: Elementary School Students, Scaffolding (Teaching Technique), Learning Strategies, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chen, Fu; Cui, Ying – Journal of Educational Data Mining, 2020
Effective learning outcome modeling is crucial to the success of learning evaluation in education. In the digital age, the movement towards online learning and computerized assessments has resulted in an explosion of structured and unstructured educational data (e.g., learners' problem-solving process data), which offers new opportunities for…
Descriptors: Models, Outcomes of Education, Data Analysis, Psychometrics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tran, Tuan M.; Hasegawa, Shinobu – International Association for Development of the Information Society, 2022
A learner model reflects learning patterns and characteristics of a learner. A learner model with learning history and its effectiveness plays a significant role in supporting a learner's understanding of their strengths and weaknesses of their way of learning in order to make proper adjustments for improvement. Nowadays, learners have been…
Descriptors: Markov Processes, Learning Processes, Models, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Hriez, Raghda Fawzey; Al-Naymat, Ghazi – Journal of Computing in Higher Education, 2021
Depicting the reason for the mismatch between instructor expectations of students' performance in advanced courses and their actual performance has been a challenging issue for a long time, which raises the question of why such a mismatch exists. An implicit reason for this mismatch is the student's weakness in prerequisite course skills. To solve…
Descriptors: Required Courses, Advanced Courses, Graphs, Outcomes of Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rushkin, Ilia; Chuang, Isaac; Tingley, Dustin – Journal of Learning Analytics, 2019
Each time a learner in a self-paced online course seeks to answer an assessment question, it takes some time for the student to read the question and arrive at an answer to submit. If multiple attempts are allowed, and the first answer is incorrect, it takes some time to provide a second answer. Here we study the distribution of such…
Descriptors: Online Courses, Response Style (Tests), Models, Learner Engagement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Williams, Janet M.; Pulido, Laurie – American Association for Adult and Continuing Education, 2022
During the COVID-19 pandemic, an adult noncredit program in the California Community College system partnered with Ease Learning to help convert face-to-face courses to an online modality. Subsequent data revealed a misalignment in the courses' Student Learning Outcomes and Instructional Objectives which became a barrier to student success. Wile's…
Descriptors: Best Practices, Teaching Methods, Online Courses, Outcomes of Education
Amy Graham Goodman – ProQuest LLC, 2021
The goal of learning analytics is to optimize learning and the environments in which it occurs. Since 2011, when learning analytics was defined as a separate and distinct area of academic inquiry, the literature has identified a need for research that presents evidence of effective learning analytics, as well as, learning analytics research that…
Descriptors: Metacognition, Learning Analytics, Calculus, Mathematics Instruction
Previous Page | Next Page ยป
Pages: 1  |  2