NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 23 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan Liu; Yongquan Dong; Chan Yin; Cheng Chen; Rui Jia – Education and Information Technologies, 2024
The open online course (MOOC) platform has seen an increase in usage, and there are a growing number of courses accessible for people to select. An effective method is urgently needed to recommend personalized courses for users. Although the existing course recommendation models consider that users' interests change over time, they often model…
Descriptors: MOOCs, Online Courses, Models, Course Selection (Students)
Peer reviewed Peer reviewed
Direct linkDirect link
Bulut, Okan; Gorgun, Guher; Yildirim-Erbasli, Seyma N.; Wongvorachan, Tarid; Daniels, Lia M.; Gao, Yizhu; Lai, Ka Wing; Shin, Jinnie – British Journal of Educational Technology, 2023
As universities around the world have begun to use learning management systems (LMSs), more learning data have become available to gain deeper insights into students' learning processes and make data-driven decisions to improve student learning. With the availability of rich data extracted from the LMS, researchers have turned much of their…
Descriptors: Formative Evaluation, Learning Analytics, Models, Learning Management Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Piao, Guangyuan – International Educational Data Mining Society, 2021
Massive Open Online Courses (MOOCs) which enable large-scale open online learning for massive users have been playing an important role in modern education for both students as well as professionals. To keep users' interest in MOOCs, recommender systems have been studied and deployed to recommend courses or videos that a user might be interested…
Descriptors: Concept Formation, Online Courses, Navigation (Information Systems), Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Sonja Kleter; Uwe Matzat; Rianne Conijn – IEEE Transactions on Learning Technologies, 2024
Much of learning analytics research has focused on factors influencing model generalizability of predictive models for academic performance. The degree of model generalizability across courses may depend on aspects, such as the similarity of the course setup, course material, the student cohort, or the teacher. Which of these contextual factors…
Descriptors: Prediction, Models, Academic Achievement, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tzeng, Jian-Wei; Lee, Chia-An; Huang, Nen-Fu; Huang, Hao-Hsuan; Lai, Chin-Feng – International Review of Research in Open and Distributed Learning, 2022
Massive open online courses (MOOCs) are open access, Web-based courses that enroll thousands of students. MOOCs deliver content through recorded video lectures, online readings, assessments, and both student-student and student-instructor interactions. Course designers have attempted to evaluate the experiences of MOOC participants, though due to…
Descriptors: Online Courses, Models, Learning Analytics, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Mubarak, Ahmed A.; Cao, Han; Zhang, Weizhen – Interactive Learning Environments, 2022
Online learning has become more popular in higher education since it adds convenience and flexibility to students' schedule. But, it has faced difficulties in the retention of the continuity of students and ensure continual growth in course. Dropout is a concerning factor in online course continuity. Therefore, it has sparked great interest among…
Descriptors: Prediction, Dropouts, Interaction, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Pei, Bo; Xing, Wanli – Journal of Educational Computing Research, 2022
This paper introduces a novel approach to identify at-risk students with a focus on output interpretability through analyzing learning activities at a finer granularity on a weekly basis. Specifically, this approach converts the predicted output from the former weeks into meaningful probabilities to infer the predictions in the current week for…
Descriptors: At Risk Students, Learning Analytics, Information Retrieval, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jamal Eddine Rafiq; Abdelali Zakrani; Mohammed Amraouy; Said Nouh; Abdellah Bennane – Turkish Online Journal of Distance Education, 2025
The emergence of online learning has sparked increased interest in predicting learners' academic performance to enhance teaching effectiveness and personalized learning. In this context, we propose a complex model APPMLT-CBT which aims to predict learners' performance in online learning settings. This systemic model integrates cognitive, social,…
Descriptors: Models, Online Courses, Educational Improvement, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Ouyang, Fan; Wu, Mian; Zheng, Luyi; Zhang, Liyin; Jiao, Pengcheng – International Journal of Educational Technology in Higher Education, 2023
As a cutting-edge field of artificial intelligence in education (AIEd) that depends on advanced computing technologies, AI performance prediction model is widely used to identify at-risk students that tend to fail, establish student-centered learning pathways, and optimize instructional design and development. A majority of the existing AI…
Descriptors: Technology Integration, Artificial Intelligence, Performance, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tran, Tuan M.; Hasegawa, Shinobu – International Association for Development of the Information Society, 2022
A learner model reflects learning patterns and characteristics of a learner. A learner model with learning history and its effectiveness plays a significant role in supporting a learner's understanding of their strengths and weaknesses of their way of learning in order to make proper adjustments for improvement. Nowadays, learners have been…
Descriptors: Markov Processes, Learning Processes, Models, Scores
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gurcan, Fatih; Ozyurt, Ozcan; Cagiltay, Nergiz Ercil – International Review of Research in Open and Distributed Learning, 2021
E-learning studies are becoming very important today as they provide alternatives and support to all types of teaching and learning programs. The effect of the COVID-19 pandemic on educational systems has further increased the significance of e-learning. Accordingly, gaining a full understanding of the general topics and trends in e-learning…
Descriptors: Educational Trends, Electronic Learning, Models, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rushkin, Ilia; Chuang, Isaac; Tingley, Dustin – Journal of Learning Analytics, 2019
Each time a learner in a self-paced online course seeks to answer an assessment question, it takes some time for the student to read the question and arrive at an answer to submit. If multiple attempts are allowed, and the first answer is incorrect, it takes some time to provide a second answer. Here we study the distribution of such…
Descriptors: Online Courses, Response Style (Tests), Models, Learner Engagement
Peer reviewed Peer reviewed
Direct linkDirect link
Ait-Adda, Samia; Bousbia, Nabila; Balla, Amar – E-Learning and Digital Media, 2023
Our aim in this paper is to improve the efficiency of a learning process by using learners' traces to detect particular needs. The analysis of the semantic path of a learner or group of learners during the learning process can allow detecting those students who are in needs of help as well as identify the insufficiently mastered concepts. We…
Descriptors: Semantics, Learning Processes, Learning Analytics, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhou, Yuhao; Li, Xihua; Cao, Yunbo; Zhao, Xuemin; Ye, Qing; Lv, Jiancheng – International Educational Data Mining Society, 2021
In educational applications, "Knowledge Tracing" (KT) has been widely studied for decades as it is considered a fundamental task towards adaptive online learning. Among proposed KT methods, Deep Knowledge Tracing (DKT) and its variants are by far the most effective ones due to the high flexibility of the neural network. However, DKT…
Descriptors: Online Courses, Computer Assisted Instruction, Networks, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sha, Lele; Rakovic, Mladen; Li, Yuheng; Whitelock-Wainwright, Alexander; Carroll, David; Gaševic, Dragan; Chen, Guanliang – International Educational Data Mining Society, 2021
Classifying educational forum posts is a longstanding task in the research of Learning Analytics and Educational Data Mining. Though this task has been tackled by applying both traditional Machine Learning (ML) approaches (e.g., Logistics Regression and Random Forest) and up-to-date Deep Learning (DL) approaches, there lacks a systematic…
Descriptors: Classification, Computer Mediated Communication, Learning Analytics, Data Analysis
Previous Page | Next Page »
Pages: 1  |  2