NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers2
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 143 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
William R. Dardick; Jeffrey R. Harring – Journal of Educational and Behavioral Statistics, 2025
Simulation studies are the basic tools of quantitative methodologists used to obtain empirical solutions to statistical problems that may be impossible to derive through direct mathematical computations. The successful execution of many simulation studies relies on the accurate generation of correlated multivariate data that adhere to a particular…
Descriptors: Statistics, Statistics Education, Problem Solving, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Najera, Hector – Measurement: Interdisciplinary Research and Perspectives, 2023
Measurement error affects the quality of population orderings of an index and, hence, increases the misclassification of the poor and the non-poor groups and affects statistical inferences from binary regression models. Hence, the conclusions about the extent, profile, and distribution of poverty are likely to be misleading. However, the size and…
Descriptors: Poverty, Error of Measurement, Classification, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Ihnwhi Heo; Fan Jia; Sarah Depaoli – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The Bayesian piecewise growth model (PGM) is a useful class of models for analyzing nonlinear change processes that consist of distinct growth phases. In applications of Bayesian PGMs, it is important to accurately capture growth trajectories and carefully consider knot placements. The presence of missing data is another challenge researchers…
Descriptors: Bayesian Statistics, Goodness of Fit, Data Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
A. M. Sadek; Fahad Al-Muhlaki – Measurement: Interdisciplinary Research and Perspectives, 2024
In this study, the accuracy of the artificial neural network (ANN) was assessed considering the uncertainties associated with the randomness of the data and the lack of learning. The Monte-Carlo algorithm was applied to simulate the randomness of the input variables and evaluate the output distribution. It has been shown that under certain…
Descriptors: Monte Carlo Methods, Accuracy, Artificial Intelligence, Guidelines
Peer reviewed Peer reviewed
Direct linkDirect link
Justin L. Kern – Journal of Educational and Behavioral Statistics, 2024
Given the frequent presence of slipping and guessing in item responses, models for the inclusion of their effects are highly important. Unfortunately, the most common model for their inclusion, the four-parameter item response theory model, potentially has severe deficiencies related to its possible unidentifiability. With this issue in mind, the…
Descriptors: Item Response Theory, Models, Bayesian Statistics, Generalization
Peer reviewed Peer reviewed
Direct linkDirect link
Gyeongcheol Cho; Heungsun Hwang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Generalized structured component analysis (GSCA) is a multivariate method for specifying and examining interrelationships between observed variables and components. Despite its data-analytic flexibility honed over the decade, GSCA always defines every component as a linear function of observed variables, which can be less optimal when observed…
Descriptors: Prediction, Methods, Networks, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Vembye, Mikkel Helding; Pustejovsky, James Eric; Pigott, Therese Deocampo – Journal of Educational and Behavioral Statistics, 2023
Meta-analytic models for dependent effect sizes have grown increasingly sophisticated over the last few decades, which has created challenges for a priori power calculations. We introduce power approximations for tests of average effect sizes based upon several common approaches for handling dependent effect sizes. In a Monte Carlo simulation, we…
Descriptors: Meta Analysis, Robustness (Statistics), Statistical Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Joo, Seang-Hwane; Lee, Philseok – Journal of Educational Measurement, 2022
Abstract This study proposes a new Bayesian differential item functioning (DIF) detection method using posterior predictive model checking (PPMC). Item fit measures including infit, outfit, observed score distribution (OSD), and Q1 were considered as discrepancy statistics for the PPMC DIF methods. The performance of the PPMC DIF method was…
Descriptors: Test Items, Bayesian Statistics, Monte Carlo Methods, Prediction
Batley, Prathiba Natesan; Hedges, Larry V. – Grantee Submission, 2021
Although statistical practices to evaluate intervention effects in SCEDs have gained prominence in the recent times, models are yet to incorporate and investigate all their analytic complexities. Most of these statistical models incorporate slopes and autocorrelations both of which contribute to trend in the data. The question that arises is…
Descriptors: Bayesian Statistics, Models, Accuracy, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Fay, Derek M.; Levy, Roy; Schulte, Ann C. – Journal of Experimental Education, 2022
Longitudinal data structures are frequently encountered in a variety of disciplines in the social and behavioral sciences. Growth curve modeling offers a highly extensible framework that allows for the exploration of rich hypotheses. However, owing to the presence of interrelated sources of potential data-model misfit at multiple levels, the…
Descriptors: Measurement, Models, Bayesian Statistics, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Cerullo, Enzo; Jones, Hayley E.; Carter, Olivia; Quinn, Terry J.; Cooper, Nicola J.; Sutton, Alex J. – Research Synthesis Methods, 2022
Standard methods for the meta-analysis of medical tests, without assuming a gold standard, are limited to dichotomous data. Multivariate probit models are used to analyse correlated dichotomous data, and can be extended to model ordinal data. Within the context of an imperfect gold standard, they have previously been used for the analysis of…
Descriptors: Meta Analysis, Test Format, Medicine, Standards
Tong, Xin; Zhang, Zhiyong – Grantee Submission, 2020
Despite broad applications of growth curve models, few studies have dealt with a practical issue -- nonnormality of data. Previous studies have used Student's "t" distributions to remedy the nonnormal problems. In this study, robust distributional growth curve models are proposed from a semiparametric Bayesian perspective, in which…
Descriptors: Robustness (Statistics), Bayesian Statistics, Models, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Shu, Tian; Luo, Guanzhong; Luo, Zhaosheng; Yu, Xiaofeng; Guo, Xiaojun; Li, Yujun – Journal of Educational and Behavioral Statistics, 2023
Cognitive diagnosis models (CDMs) are the statistical framework for cognitive diagnostic assessment in education and psychology. They generally assume that subjects' latent attributes are dichotomous--mastery or nonmastery, which seems quite deterministic. As an alternative to dichotomous attribute mastery, attention is drawn to the use of a…
Descriptors: Cognitive Measurement, Models, Diagnostic Tests, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Rüttenauer, Tobias – Sociological Methods & Research, 2022
Spatial regression models provide the opportunity to analyze spatial data and spatial processes. Yet, several model specifications can be used, all assuming different types of spatial dependence. This study summarizes the most commonly used spatial regression models and offers a comparison of their performance by using Monte Carlo experiments. In…
Descriptors: Models, Monte Carlo Methods, Social Science Research, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Man, Kaiwen; Harring, Jeffrey R. – Educational and Psychological Measurement, 2019
With the development of technology-enhanced learning platforms, eye-tracking biometric indicators can be recorded simultaneously with students item responses. In the current study, visual fixation, an essential eye-tracking indicator, is modeled to reflect the degree of test engagement when a test taker solves a set of test questions. Three…
Descriptors: Test Items, Eye Movements, Models, Regression (Statistics)
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10