NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jiro Kondo; Shota Nakamura – Journal of Chemical Education, 2023
The use of molecular models in chemistry and biochemistry classes is very effective in helping students understand covalent bonds and the chemical structure of molecules. However, conventional molecular models cannot represent intermolecular interactions such as hydrogen bonds and electrostatic interactions. Herein, we describe 3D printed…
Descriptors: Chemistry, Molecular Structure, Scientific Concepts, Biochemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Mihasan, Marius – Biochemistry and Molecular Biology Education, 2021
The structure and function of biomolecules relationship is the hallmark of biochemistry, molecular biology, and life sciences in general. Physical models of macromolecules give students the possibility to manipulate these structures in three dimensions, developing a sense of spatiality and a better understanding of key aspects such as atom size…
Descriptors: Printing, Computer Peripherals, Biochemistry, Molecular Biology
Peer reviewed Peer reviewed
Direct linkDirect link
H. Martin; E. Eisner; J. K. Klosterman – Journal of Chemical Education, 2023
3D printers have facilitated a wealth of 3D printed molecular models illustrating key structural concepts for student learning. However, general adoption of 3D printed models in the organic chemistry classroom proceeds slowly as the majority of consumer-grade 3D (fused deposition modeling (FDM) and resin) printers are inherently monochromatic,…
Descriptors: Printing, Computer Peripherals, Molecular Structure, Organic Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Niece, Brian K. – Journal of Chemical Education, 2019
Models were prepared by 3D printing that can be used to demonstrate the operations required for the study of molecular symmetry. The models were designed to emphasize the order and locations of rotation axes and to clearly illustrate the more abstract reflection and improper rotation axes. The models were well-received by students in a course on…
Descriptors: Molecular Structure, Computer Peripherals, Science Instruction, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Savchenkov, Anton V. – Journal of Chemical Education, 2020
Sets of models of molecules (which are of interest for teaching molecular structure, symmetry, and related topics in many chemical disciplines) were prepared and made available either for self-directed 3D-printing or through the 3D-printing company Shapeways providing 3D-printing as a service. This allows teachers to save time on searching for…
Descriptors: Computer Peripherals, Printing, Hands on Science, Manipulative Materials
Peer reviewed Peer reviewed
Direct linkDirect link
Penny, Matthew R.; Cao, Zi Jing; Patel, Bhaven; dos Santos, Bruno Sil; Asquith, Christopher R. M.; Szulc, Blanka R.; Rao, Zenobia X.; Muwaffak, Zaid; Malkinson, John P.; Hilton, Stephen T. – Journal of Chemical Education, 2017
Three-dimensional (3D) chemical models are a well-established learning tool used to enhance the understanding of chemical structures by converting two-dimensional paper or screen outputs into realistic three-dimensional objects. While commercial atom model kits are readily available, there is a surprising lack of large molecular and orbital models…
Descriptors: Organic Chemistry, Science Instruction, Scientific Concepts, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Blauch, David N.; Carroll, Felix A. – Journal of Chemical Education, 2014
A 3D printer is used to prepare a variety of models representing potential energy as a function of two geometric coordinates. These models facilitate the teaching of structure-energy relationships in molecular conformations and in chemical reactions.
Descriptors: Computer Peripherals, Educational Technology, Technology Uses in Education, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Warfa, Abdi-Rizak M.; Roehrig, Gillian H.; Schneider, Jamie L.; Nyachwaya, James – Chemistry Education Research and Practice, 2014
A significant body of the literature in science education examines students' conceptions of the dissolution of ionic solids in water, often showing that students lack proper understanding of the particulate nature of dissolving materials as well as holding numerous misconceptions about the dissolution process. Consequently, chemical educators have…
Descriptors: Chemistry, Science Instruction, Classroom Communication, Computer Peripherals