NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Location
China1
Italy1
Taiwan1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 26 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Roy Levy; Daniel McNeish – Journal of Educational and Behavioral Statistics, 2025
Research in education and behavioral sciences often involves the use of latent variable models that are related to indicators, as well as related to covariates or outcomes. Such models are subject to interpretational confounding, which occurs when fitting the model with covariates or outcomes alters the results for the measurement model. This has…
Descriptors: Models, Statistical Analysis, Measurement, Data Interpretation
Peer reviewed Peer reviewed
Direct linkDirect link
Siegel, Lianne; Chu, Haitao – Research Synthesis Methods, 2023
Reference intervals, or reference ranges, aid medical decision-making by containing a pre-specified proportion (e.g., 95%) of the measurements in a representative healthy population. We recently proposed three approaches for estimating a reference interval from a meta-analysis based on a random effects model: a frequentist approach, a Bayesian…
Descriptors: Bayesian Statistics, Meta Analysis, Intervals, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Fay, Derek M.; Levy, Roy; Schulte, Ann C. – Journal of Experimental Education, 2022
Longitudinal data structures are frequently encountered in a variety of disciplines in the social and behavioral sciences. Growth curve modeling offers a highly extensible framework that allows for the exploration of rich hypotheses. However, owing to the presence of interrelated sources of potential data-model misfit at multiple levels, the…
Descriptors: Measurement, Models, Bayesian Statistics, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Mangino, Anthony A.; Smith, Kendall A.; Finch, W. Holmes; Hernández-Finch, Maria E. – Measurement and Evaluation in Counseling and Development, 2022
A number of machine learning methods can be employed in the prediction of suicide attempts. However, many models do not predict new cases well in cases with unbalanced data. The present study improved prediction of suicide attempts via the use of a generative adversarial network.
Descriptors: Prediction, Suicide, Artificial Intelligence, Networks
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Uglanova, Irina – Practical Assessment, Research & Evaluation, 2021
There is increased use of Bayesian networks (BN) in educational assessment. In psychometrics, BN serves as a measurement model with high flexibility, suitable to model educational assessment data with a complex structure. BN is a novel psychometric approach and not all aspects of its application are well-known. The article aims to provide the…
Descriptors: Bayesian Statistics, Educational Assessment, Psychometrics, Criticism
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Xue; Tao, Jian; Wang, Chun; Shi, Ning-Zhong – Journal of Educational Measurement, 2019
Model selection is important in any statistical analysis, and the primary goal is to find the preferred (or most parsimonious) model, based on certain criteria, from a set of candidate models given data. Several recent publications have employed the deviance information criterion (DIC) to do model selection among different forms of multilevel item…
Descriptors: Bayesian Statistics, Item Response Theory, Measurement, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Taylor, John M. – Practical Assessment, Research & Evaluation, 2019
Although frequentist estimators can effectively fit ordinal confirmatory factor analysis (CFA) models, their assumptions are difficult to establish and estimation problems may prohibit their use at times. Consequently, researchers may want to also look to Bayesian analysis to fit their ordinal models. Bayesian methods offer researchers an…
Descriptors: Bayesian Statistics, Factor Analysis, Least Squares Statistics, Error of Measurement
Zhang, Xue; Tao, Jian; Wang, Chun; Shi, Ning-Zhong – Grantee Submission, 2019
Model selection is important in any statistical analysis, and the primary goal is to find the preferred (or most parsimonious) model, based on certain criteria, from a set of candidate models given data. Several recent publications have employed the deviance information criterion (DIC) to do model selection among different forms of multilevel item…
Descriptors: Bayesian Statistics, Item Response Theory, Measurement, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Qiao, Xin; Jiao, Hong; He, Qiwei – Journal of Educational Measurement, 2023
Multiple group modeling is one of the methods to address the measurement noninvariance issue. Traditional studies on multiple group modeling have mainly focused on item responses. In computer-based assessments, joint modeling of response times and action counts with item responses helps estimate the latent speed and action levels in addition to…
Descriptors: Multivariate Analysis, Models, Item Response Theory, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Hung-Yu – Educational and Psychological Measurement, 2017
Mixture item response theory (IRT) models have been suggested as an efficient method of detecting the different response patterns derived from latent classes when developing a test. In testing situations, multiple latent traits measured by a battery of tests can exhibit a higher-order structure, and mixtures of latent classes may occur on…
Descriptors: Item Response Theory, Models, Bayesian Statistics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Roos, J. Micah – Measurement: Interdisciplinary Research and Perspectives, 2014
The Vanishing Tetrad Test (VTT) (Bollen, Lennox, & Dahly, 2009; Bollen & Ting, 2000; Hipp, Bauer, & Bollen, 2005) is an extension of the Confirmatory Tetrad Analysis (CTA) proposed by Bollen and Ting (Bollen & Ting, 1993). VTT is a powerful tool for detecting model misspecification and can be particularly useful in cases in which…
Descriptors: Measurement, Models, Statistical Analysis, Goodness of Fit
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Miratrix, Luke; Feller, Avi; Pillai, Natesh; Pati, Debdeep – Society for Research on Educational Effectiveness, 2016
Modeling the distribution of site level effects is an important problem, but it is also an incredibly difficult one. Current methods rely on distributional assumptions in multilevel models for estimation. There it is hoped that the partial pooling of site level estimates with overall estimates, designed to take into account individual variation as…
Descriptors: Probability, Models, Statistical Distributions, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Shuck, Brad; Zigarmi, Drea; Owen, Jesse – European Journal of Training and Development, 2015
Purpose: The purpose of this study was to empirically examine the utility of self-determination theory (SDT) within the engagement-performance linkage. Design/methodology/approach: Bayesian multi-measurement mediation modeling was used to estimate the relation between SDT, engagement and a proxy measure of performance (e.g. work intentions) (N =…
Descriptors: Psychological Needs, Self Determination, Intention, Bayesian Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Andrade, Alejandro; Danish, Joshua A.; Maltese, Adam V. – Journal of Learning Analytics, 2017
Interactive learning environments with body-centric technologies lie at the intersection of the design of embodied learning activities and multimodal learning analytics. Sensing technologies can generate large amounts of fine-grained data automatically captured from student movements. Researchers can use these fine-grained data to create a…
Descriptors: Measurement, Interaction, Models, Educational Environment
Peer reviewed Peer reviewed
Direct linkDirect link
Anobile, Giovanni; Cicchini, Guido Marco; Burr, David C. – Cognition, 2012
Mapping of number onto space is fundamental to mathematics and measurement. Previous research suggests that while typical adults with mathematical schooling map numbers veridically onto a linear scale, pre-school children and adults without formal mathematics training, as well as individuals with dyscalculia, show strong compressive,…
Descriptors: Reading Achievement, Numbers, Bayesian Statistics, Preschool Children
Previous Page | Next Page »
Pages: 1  |  2