Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 6 |
| Since 2007 (last 20 years) | 11 |
Descriptor
| Data Collection | 11 |
| Large Group Instruction | 11 |
| Models | 11 |
| Online Courses | 11 |
| Data Analysis | 10 |
| Educational Technology | 8 |
| College Students | 6 |
| Prediction | 6 |
| Teaching Methods | 6 |
| Technology Uses in Education | 6 |
| Tests | 6 |
| More ▼ | |
Source
| International Educational… | 7 |
| Journal of Educational Data… | 1 |
| Journal of Learning Analytics | 1 |
| ProQuest LLC | 1 |
| Technology, Knowledge and… | 1 |
Author
Publication Type
| Collected Works - Proceedings | 5 |
| Journal Articles | 3 |
| Reports - Research | 3 |
| Reports - Descriptive | 2 |
| Speeches/Meeting Papers | 2 |
| Dissertations/Theses -… | 1 |
Education Level
Audience
Laws, Policies, & Programs
Assessments and Surveys
| Program for International… | 1 |
What Works Clearinghouse Rating
Almatrafi, Omaima – ProQuest LLC, 2018
A Massive Open Online Course (MOOC) is a course that is offered fully online and is usually open for enrollment by any individual, with no limit on the number of participants. MOOCs are a popular resource for learning worldwide with over 23 million new learners registering for MOOCs in 2017 alone. Coursera, the most popular MOOC platform, has…
Descriptors: Large Group Instruction, Online Courses, Educational Technology, Technology Uses in Education
Pardos, Zachary A.; Whyte, Anthony; Kao, Kevin – Technology, Knowledge and Learning, 2016
In this paper, we address issues of transparency, modularity, and privacy with the introduction of an open source, web-based data repository and analysis tool tailored to the Massive Open Online Course community. The tool integrates data request/authorization and distribution workflow features as well as provides a simple analytics module upload…
Descriptors: Online Courses, Large Group Instruction, Technology Uses in Education, Educational Technology
Zeng, Ziheng; Chaturvedi, Snigdha; Bhat, Suma – International Educational Data Mining Society, 2017
Characterizing the nature of students' affective and emotional states and detecting them is of fundamental importance in online course platforms. In this paper, we study this problem by using discussion forum posts derived from large open online courses. We find that posts identified as encoding confusion are actually manifestations of different…
Descriptors: Online Courses, Large Group Instruction, Educational Technology, Technology Uses in Education
Reich, Justin; Tingley, Dustin; Leder-Luis, Jetson; Roberts, Margaret E.; Stewart, Brandon M. – Journal of Learning Analytics, 2015
Dealing with the vast quantities of text that students generate in Massive Open Online Courses (MOOCs) and other large-scale online learning environments is a daunting challenge. Computational tools are needed to help instructional teams uncover themes and patterns as students write in forums, assignments, and surveys. This paper introduces to the…
Descriptors: Large Group Instruction, Online Courses, Data Collection, Data Analysis
Ren, Zhiyun; Rangwala, Huzefa; Johri, Aditya – International Educational Data Mining Society, 2016
The past few years has seen the rapid growth of data mining approaches for the analysis of data obtained from Massive Open Online Courses (MOOCs). The objectives of this study are to develop approaches to predict the scores a student may achieve on a given grade-related assessment based on information, considered as prior performance or prior…
Descriptors: Large Group Instruction, Online Courses, Educational Technology, Technology Uses in Education
Waters, Andrew; Studer, Christoph; Baraniuk, Richard – Journal of Educational Data Mining, 2014
Identifying collaboration between learners in a course is an important challenge in education for two reasons: First, depending on the courses rules, collaboration can be considered a form of cheating. Second, it helps one to more accurately evaluate each learners competence. While such collaboration identification is already challenging in…
Descriptors: Cooperation, Large Group Instruction, Online Courses, Probability
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Boyer, Kristy Elizabeth, Ed.; Yudelson, Michael, Ed. – International Educational Data Mining Society, 2018
The 11th International Conference on Educational Data Mining (EDM 2018) is held under the auspices of the International Educational Data Mining Society at the Templeton Landing in Buffalo, New York. This year's EDM conference was highly competitive, with 145 long and short paper submissions. Of these, 23 were accepted as full papers and 37…
Descriptors: Data Collection, Data Analysis, Computer Science Education, Program Proposals
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Lynch, Collin F., Ed.; Merceron, Agathe, Ed.; Desmarais, Michel, Ed.; Nkambou, Roger, Ed. – International Educational Data Mining Society, 2019
The 12th iteration of the International Conference on Educational Data Mining (EDM 2019) is organized under the auspices of the International Educational Data Mining Society in Montreal, Canada. The theme of this year's conference is EDM in Open-Ended Domains. As EDM has matured it has increasingly been applied to open-ended and ill-defined tasks…
Descriptors: Data Collection, Data Analysis, Information Retrieval, Content Analysis
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection

Direct link
Peer reviewed
