NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Di Vincenzo, Antonella; Floriano, Michele A. – Journal of Chemical Education, 2020
An application for visualizing the dynamic properties of an equimolar binary mixture of isotropic reactive particles is presented. By introducing a user selectable choice for the activation energy, the application is useful to demonstrate qualitatively that the reaction rate depends on the above choice and on temperature. The application is based…
Descriptors: High School Students, Undergraduate Students, Molecular Structure, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Beck, Jordan P.; Muniz, Marc N.; Crickmore, Cassidy; Sizemore, Logan – Chemistry Education Research and Practice, 2020
Models that are used to predict and explain phenomena related to molecular vibration and rotation are ubiquitous in physical chemistry, and are of importance in many related fields. Yet, little work has been done to characterize student use and application of these models. We describe the results of a multi-year, multi-institutional qualitative…
Descriptors: Chemistry, Models, Science Instruction, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Ginzburg, Aurora L.; Baca, Nicholas A.; Hampton, Philip D. – Journal of Chemical Education, 2014
A traditional organic chemistry laboratory experiment involves the acid-catalyzed isomerization of (-)-menthone to (+)-isomenthone. This experiment generates large quantities of organic and aqueous waste, and only allows the final ratio of isomers to be determined. A "green" modification has been developed that replaces the mineral acid…
Descriptors: Science Instruction, Organic Chemistry, Science Laboratories, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Hitt, Austin Manning; Townsend, J. Scott – Science Activities: Classroom Projects and Curriculum Ideas, 2015
Elementary, middle-level, and high school science teachers commonly find their students have misconceptions about heat and temperature. Unfortunately, student misconceptions are difficult to modify or change and can prevent students from learning the accurate scientific explanation. In order to improve our students' understanding of heat and…
Descriptors: Science Instruction, Scientific Concepts, Misconceptions, Heat
Peer reviewed Peer reviewed
Direct linkDirect link
Prigozhin, Maxim B.; Scott, Gregory E.; Denos, Sharlene – Journal of Chemical Education, 2014
In this activity, science education and modern technology are bridged to teach students at the high school and undergraduate levels about protein folding and to strengthen their model building skills. Students are guided from a textbook picture of a protein as a rigid crystal structure to a more realistic view: proteins are highly dynamic…
Descriptors: Computer Simulation, Models, Science Education, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Bhattacharjee, Shayak – European Journal of Physics, 2012
The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…
Descriptors: Molecular Structure, Mechanics (Physics), Science Instruction, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Gron, Oyvind – European Journal of Physics, 2010
Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…
Descriptors: Kinetics, Physics, Scientific Concepts, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Waner, Mark J. – Journal of Chemical Education, 2010
This work examines commonly used particulate-level pictures meant to illustrate gases. These pictures are found throughout textbooks in the middle grades through the college level, as well as in questions frequently used to assess conceptual learning in students. This work uses the kinetic-molecular theory of gases to demonstrate the inaccuracies…
Descriptors: Concept Teaching, Textbooks, Kinetics, Science Instruction
Peer reviewed Peer reviewed
Olsson, Lars-Fride; Kloo, Lars – Journal of Chemical Education, 2004
The interplay between a nucleus and an electron pair is explained through a basic application of an electrostatic and balanced model to determine the correlated and repulsive movements of the electron pair. The stable correlation depends on the positive charge produced by the combined force, which in turn establishes a negative potential energy.
Descriptors: Science Education, Physics, Chemistry, Models
Peer reviewed Peer reviewed
Horowitz, Gail; Schwartz, Gary – Journal of Chemical Education, 2004
The molecular modeling was used to reinforce more general skills such as deducing and drawing reaction mechanisms, analyzing reaction kinetics and thermodynamics and drawing reaction coordinate energy diagrams. This modeling was done through the design of mechanistic puzzles, involving reactions not familiar to the students.
Descriptors: Thermodynamics, Kinetics, Molecular Structure, Models
Peer reviewed Peer reviewed
Bauer, S. H. – Journal of Chemical Education, 1986
Proposes a model for kinetic processes said to be similar in computational effort and yielding similar results to conventional transition state theory (TST), while maintaining parsimony and credulity. Argues that partitioning of states into groups be limited to energy space in contrast to TST. (JM)
Descriptors: Chemical Bonding, Chemical Reactions, Chemistry, College Science