NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Practitioners1
Laws, Policies, & Programs
Assessments and Surveys
Raven Progressive Matrices1
What Works Clearinghouse Rating
Showing 1 to 15 of 27 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yafit Gabay; Lana Jacob; Atil Mansour; Uri Hertz – npj Science of Learning, 2025
The current study examined how individuals with neurodevelopmental disorders navigate the complexities of learning within multidimensional environments marked by uncertain dimension values and without explicit guidance. Participants engaged in a game-like complex reinforcement learning task in which the stimuli dimension determining reward…
Descriptors: Dyslexia, Attention Deficit Hyperactivity Disorder, Difficulty Level, Reinforcement
Peer reviewed Peer reviewed
Direct linkDirect link
Viechtbauer, Wolfgang; López-López, José Antonio – Research Synthesis Methods, 2022
Heterogeneity is commonplace in meta-analysis. When heterogeneity is found, researchers often aim to identify predictors that account for at least part of such heterogeneity by using mixed-effects meta-regression models. Another potentially relevant goal is to focus on the amount of heterogeneity as a function of one or more predictors, but this…
Descriptors: Meta Analysis, Models, Predictor Variables, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Seyedahmad Rahimi; Russell Almond; Andrea Ramírez-Salgado; Christine Wusylko; Lauren Weisberg; Yukyeong Song; Jie Lu; Ted Myers; Bowen Wang; Xiaomaon Wang; Marc Francois; Jennifer Moses; Eric Wright – Journal of Computer Assisted Learning, 2024
Background: Stealth assessment is a learning analytics method, which leverages the collection and analysis of learners' interaction data to make real-time inferences about their learning. Employed in digital learning environments, stealth assessment helps researchers, educators, and teachers evaluate learners' competencies and customize the…
Descriptors: Competence, Models, Research Methodology, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Kangasrääsiö, Antti; Jokinen, Jussi P. P.; Oulasvirta, Antti; Howes, Andrew; Kaski, Samuel – Cognitive Science, 2019
This paper addresses a common challenge with computational cognitive models: identifying parameter values that are both theoretically plausible and generate predictions that match well with empirical data. While computational models can offer deep explanations of cognition, they are computationally complex and often out of reach of traditional…
Descriptors: Inferences, Computation, Cognitive Processes, Models
Opper, Isaac M. – RAND Corporation, 2020
Researchers often include covariates when they analyze the results of randomized controlled trials (RCTs), valuing the increased precision of the estimates over the potential of inducing small-sample bias when doing so. In this paper, we develop a sufficient condition which ensures that the inclusion of covariates does not induce small-sample bias…
Descriptors: Artificial Intelligence, Man Machine Systems, Educational Technology, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Jarecki, Jana B.; Meder, Björn; Nelson, Jonathan D. – Cognitive Science, 2018
Humans excel in categorization. Yet from a computational standpoint, learning a novel probabilistic classification task involves severe computational challenges. The present paper investigates one way to address these challenges: assuming class-conditional independence of features. This feature independence assumption simplifies the inference…
Descriptors: Classification, Conditioning, Inferences, Novelty (Stimulus Dimension)
Sharp, Rebecca Reynolds – ProQuest LLC, 2017
We address the challenging task of "computational natural language inference," by which we mean bridging two or more natural language texts while also providing an explanation of how they are connected. In the context of question answering (i.e., finding short answers to natural language questions), this inference connects the question…
Descriptors: Computation, Natural Language Processing, Inferences, Questioning Techniques
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhao, Siyuan; Heffernan, Neil – International Educational Data Mining Society, 2017
Personalized learning considers that the causal effects of a studied learning intervention may differ for the individual student. Making the inference about causal effects of studies interventions is a central problem. In this paper we propose the Residual Counterfactual Networks (RCN) for answering counterfactual inference questions, such as…
Descriptors: Computation, Outcomes of Treatment, Networks, Randomized Controlled Trials
Peer reviewed Peer reviewed
Direct linkDirect link
Tutz, Gerhard; Berger, Moritz – Journal of Educational and Behavioral Statistics, 2016
Heterogeneity in response styles can affect the conclusions drawn from rating scale data. In particular, biased estimates can be expected if one ignores a tendency to middle categories or to extreme categories. An adjacent categories model is proposed that simultaneously models the content-related effects and the heterogeneity in response styles.…
Descriptors: Response Style (Tests), Rating Scales, Data Interpretation, Statistical Bias
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yang, Sojung; Park, Seongbin – Informatics in Education, 2014
There are many important issues in informatics and many agree that algorithms and programming are most important issues that need to be included in informatics education (Dagiene and Jevsikova, 2012). In this paper, we propose how some of these issues can be easily taught using the notion of a formal system which consists of axioms and inference…
Descriptors: Information Science, Teaching Methods, Inferences, Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Hamlin, J. Kiley; Ullman, Tomer; Tenenbaum, Josh; Goodman, Noah; Baker, Chris – Developmental Science, 2013
Evaluating individuals based on their pro- and anti-social behaviors is fundamental to successful human interaction. Recent research suggests that even preverbal infants engage in social evaluation; however, it remains an open question whether infants' judgments are driven uniquely by an analysis of the mental states that motivate others' helpful…
Descriptors: Infants, Social Cognition, Bayesian Statistics, Infant Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Vasdekis, Vassilis G. S.; Cagnone, Silvia; Moustaki, Irini – Psychometrika, 2012
The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate…
Descriptors: Geometric Concepts, Computation, Probability, Longitudinal Studies
Kataria, Saurabh – ProQuest LLC, 2012
Recent explosive growth of interconnected document collections such as citation networks, network of web pages, content generated by crowd-sourcing in collaborative environments, etc., has posed several challenging problems for data mining and machine learning community. One central problem in the domain of document networks is that of "link…
Descriptors: Networks, Prediction, Cooperation, Cooperative Planning
Peer reviewed Peer reviewed
Direct linkDirect link
Culpepper, Steven Andrew – Applied Psychological Measurement, 2012
Measurement error significantly biases interaction effects and distorts researchers' inferences regarding interactive hypotheses. This article focuses on the single-indicator case and shows how to accurately estimate group slope differences by disattenuating interaction effects with errors-in-variables (EIV) regression. New analytic findings were…
Descriptors: Evidence, Test Length, Interaction, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Culpepper, Steven Andrew – Psychometrika, 2012
The study of prediction bias is important and the last five decades include research studies that examined whether test scores differentially predict academic or employment performance. Previous studies used ordinary least squares (OLS) to assess whether groups differ in intercepts and slopes. This study shows that OLS yields inaccurate inferences…
Descriptors: Academic Achievement, Prediction, Measurement, Least Squares Statistics
Previous Page | Next Page »
Pages: 1  |  2