Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 2 |
| Since 2017 (last 10 years) | 5 |
| Since 2007 (last 20 years) | 11 |
Descriptor
| Individual Differences | 11 |
| Intelligent Tutoring Systems | 11 |
| Models | 11 |
| Data Analysis | 6 |
| Learning Processes | 6 |
| Mathematics Instruction | 5 |
| Error Patterns | 4 |
| Interaction | 4 |
| Knowledge Level | 4 |
| Prediction | 4 |
| Problem Solving | 4 |
| More ▼ | |
Source
| International Educational… | 7 |
| Educational Technology &… | 1 |
| Grantee Submission | 1 |
| International Journal of… | 1 |
| International Working Group… | 1 |
Author
Publication Type
| Reports - Research | 5 |
| Speeches/Meeting Papers | 5 |
| Reports - Evaluative | 4 |
| Collected Works - Proceedings | 2 |
| Journal Articles | 2 |
Education Level
| Higher Education | 5 |
| Junior High Schools | 4 |
| Middle Schools | 4 |
| Postsecondary Education | 4 |
| Secondary Education | 4 |
| Elementary Education | 3 |
| Grade 8 | 2 |
| High Schools | 2 |
| Grade 6 | 1 |
| Intermediate Grades | 1 |
Audience
Location
| Brazil | 1 |
| Finland | 1 |
| France | 1 |
| Massachusetts | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| Massachusetts Comprehensive… | 1 |
| Program for International… | 1 |
What Works Clearinghouse Rating
Eglington, Luke G.; Pavlik, Philip I., Jr. – International Journal of Artificial Intelligence in Education, 2023
An important component of many Adaptive Instructional Systems (AIS) is a 'Learner Model' intended to track student learning and predict future performance. Predictions from learner models are frequently used in combination with mastery criterion decision rules to make pedagogical decisions. Important aspects of learner models, such as learning…
Descriptors: Computer Assisted Instruction, Intelligent Tutoring Systems, Learning Processes, Individual Differences
Eglington, Luke G.; Pavlik, Philip I., Jr. – Grantee Submission, 2022
An important component of many Adaptive Instructional Systems (AIS) is a 'Learner Model' intended to track student learning and predict future performance. Predictions from learner models are frequently used in combination with mastery criterion decision rules to make pedagogical decisions. Important aspects of learner models, such as learning…
Descriptors: Computer Assisted Instruction, Intelligent Tutoring Systems, Learning Processes, Individual Differences
Eagle, Michael; Corbett, Albert; Stamper, John; Mclaren, Bruce – International Educational Data Mining Society, 2018
In this work we use prior to tutor-session data to generate an individualized student knowledge model. Intelligent learning environments use student models to individualize curriculum sequencing and help messages. Researchers decompose the learning tasks into sets of Knowledge Components (KCs) that represent individual units of knowledge; the…
Descriptors: Individualized Instruction, Models, Data Analysis, Knowledge Level
Clement, Benjamin; Oudeyer, Pierre-Yves; Lopes, Manuel – International Educational Data Mining Society, 2016
Online planning of good teaching sequences has the potential to provide a truly personalized teaching experience with a huge impact on the motivation and learning of students. In this work we compare two main approaches to achieve such a goal, POMDPs that can find an optimal long-term path, and Multi-armed bandits that optimize policies locally…
Descriptors: Intelligent Tutoring Systems, Markov Processes, Models, Teaching Methods
Liu, Ran; Koedinger, Kenneth R. K – International Educational Data Mining Society, 2017
Research in Educational Data Mining could benefit from greater efforts to ensure that models yield reliable, valid, and interpretable parameter estimates. These efforts have especially been lacking for individualized student-parameter models. We collected two datasets from a sizable student population with excellent "depth" -- that is,…
Descriptors: Data Analysis, Intelligent Tutoring Systems, Bayesian Statistics, Pretests Posttests
Khajah, Mohammad; Lindsey, Robert V.; Mozer, Michael C. – International Educational Data Mining Society, 2016
In theoretical cognitive science, there is a tension between highly structured models whose parameters have a direct psychological interpretation and highly complex, general-purpose models whose parameters and representations are difficult to interpret. The former typically provide more insight into cognition but the latter often perform better.…
Descriptors: Bayesian Statistics, Data Analysis, Prediction, Intelligent Tutoring Systems
Ezen-Can, Aysu; Boyer, Kristy Elizabeth – International Educational Data Mining Society, 2015
The tremendous effectiveness of intelligent tutoring systems is due in large part to their interactivity. However, when learners are free to choose the extent to which they interact with a tutoring system, not all learners do so actively. This paper examines a study with a natural language tutorial dialogue system for computer science, in which…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Computer Science Education, Problem Solving
McQuiggan, Scott W.; Robison, Jennifer L.; Lester, James C. – Educational Technology & Society, 2010
Affect has been the subject of increasing attention in cognitive accounts of learning. Many intelligent tutoring systems now seek to adapt pedagogy to student affective and motivational processes in an effort to increase the effectiveness of tutorial interaction and improve learning outcomes. To this end, recent work has begun to investigate the…
Descriptors: Intelligent Tutoring Systems, Educational Environment, Outcomes of Education, Learning Experience
Feng, Mingyu; Beck, Joseph – International Working Group on Educational Data Mining, 2009
Representing domain knowledge is important for constructing educational software, and automated approaches have been proposed to construct and refine such models. In this paper, instead of applying automated and computationally intensive approaches, we simply start with existing hand-constructed transfer models at various levels of granularity and…
Descriptors: Data Analysis, Models, Transfer of Training, Intelligent Tutoring Systems
Lynch, Collin F., Ed.; Merceron, Agathe, Ed.; Desmarais, Michel, Ed.; Nkambou, Roger, Ed. – International Educational Data Mining Society, 2019
The 12th iteration of the International Conference on Educational Data Mining (EDM 2019) is organized under the auspices of the International Educational Data Mining Society in Montreal, Canada. The theme of this year's conference is EDM in Open-Ended Domains. As EDM has matured it has increasingly been applied to open-ended and ill-defined tasks…
Descriptors: Data Collection, Data Analysis, Information Retrieval, Content Analysis
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection

Peer reviewed
Direct link
