Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 13 |
| Since 2017 (last 10 years) | 44 |
| Since 2007 (last 20 years) | 149 |
Descriptor
| Factor Analysis | 184 |
| Models | 184 |
| Regression (Statistics) | 79 |
| Foreign Countries | 57 |
| Statistical Analysis | 55 |
| Correlation | 51 |
| Maximum Likelihood Statistics | 49 |
| Goodness of Fit | 33 |
| Predictor Variables | 33 |
| Questionnaires | 30 |
| Computation | 28 |
| More ▼ | |
Source
Author
| Maydeu-Olivares, Alberto | 3 |
| Cole, Rachel | 2 |
| Ferrer, Emilio | 2 |
| Forero, Carlos G. | 2 |
| Kemple, James J. | 2 |
| Lent, Jessica | 2 |
| Marcoulides, George A. | 2 |
| McCormick, Meghan | 2 |
| Nathanson, Lori | 2 |
| Raykov, Tenko | 2 |
| Schweizer, Karl | 2 |
| More ▼ | |
Publication Type
Education Level
Audience
| Researchers | 2 |
Location
| Australia | 4 |
| Spain | 4 |
| Turkey | 4 |
| New York | 3 |
| Belgium | 2 |
| Brazil | 2 |
| China | 2 |
| Germany | 2 |
| Israel | 2 |
| Malaysia | 2 |
| Netherlands | 2 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Michael Kane – ETS Research Report Series, 2023
Linear functional relationships are intended to be symmetric and therefore cannot generally be accurately estimated using ordinary least squares regression equations. Orthogonal regression (OR) models allow for errors in both "Y" and "X" and therefore can provide symmetric estimates of these relationships. The most…
Descriptors: Factor Analysis, Regression (Statistics), Mathematical Models, Relationship
Chunhua Cao; Yan Wang; Eunsook Kim – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Multilevel factor mixture modeling (FMM) is a hybrid of multilevel confirmatory factor analysis (CFA) and multilevel latent class analysis (LCA). It allows researchers to examine population heterogeneity at the within level, between level, or both levels. This tutorial focuses on explicating the model specification of multilevel FMM that considers…
Descriptors: Hierarchical Linear Modeling, Factor Analysis, Nonparametric Statistics, Statistical Analysis
Sooyong Lee; Suhwa Han; Seung W. Choi – Journal of Educational Measurement, 2024
Research has shown that multiple-indicator multiple-cause (MIMIC) models can result in inflated Type I error rates in detecting differential item functioning (DIF) when the assumption of equal latent variance is violated. This study explains how the violation of the equal variance assumption adversely impacts the detection of nonuniform DIF and…
Descriptors: Factor Analysis, Bayesian Statistics, Test Bias, Item Response Theory
Gonzalez, Oscar – Educational and Psychological Measurement, 2023
When scores are used to make decisions about respondents, it is of interest to estimate classification accuracy (CA), the probability of making a correct decision, and classification consistency (CC), the probability of making the same decision across two parallel administrations of the measure. Model-based estimates of CA and CC computed from the…
Descriptors: Classification, Accuracy, Intervals, Probability
Liu, Xiaoling; Cao, Pei; Lai, Xinzhen; Wen, Jianbing; Yang, Yanyun – Educational and Psychological Measurement, 2023
Percentage of uncontaminated correlations (PUC), explained common variance (ECV), and omega hierarchical ([omega]H) have been used to assess the degree to which a scale is essentially unidimensional and to predict structural coefficient bias when a unidimensional measurement model is fit to multidimensional data. The usefulness of these indices…
Descriptors: Correlation, Measurement Techniques, Prediction, Regression (Statistics)
Tenko Raykov; Christine DiStefano; Lisa Calvocoressi – Educational and Psychological Measurement, 2024
This note demonstrates that the widely used Bayesian Information Criterion (BIC) need not be generally viewed as a routinely dependable index for model selection when the bifactor and second-order factor models are examined as rival means for data description and explanation. To this end, we use an empirically relevant setting with…
Descriptors: Bayesian Statistics, Models, Decision Making, Comparative Analysis
Pere J. Ferrando; Ana Hernández-Dorado; Urbano Lorenzo-Seva – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A frequent criticism of exploratory factor analysis (EFA) is that it does not allow correlated residuals to be modelled, while they can be routinely specified in the confirmatory (CFA) model. In this article, we propose an EFA approach in which both the common factor solution and the residual matrix are unrestricted (i.e., the correlated residuals…
Descriptors: Correlation, Factor Analysis, Models, Goodness of Fit
Sideridis, Georgios D.; Jaffari, Fathima – Measurement and Evaluation in Counseling and Development, 2022
The utility of the maximum likelihood F-test was demonstrated as an alternative to the omnibus Chi-square test when evaluating model fit in confirmatory factor analysis with small samples, as it has been well documented that the likelihood ratio test (T[subscript ML]) with small samples is not Chi-square distributed.
Descriptors: Maximum Likelihood Statistics, Factor Analysis, Alternative Assessment, Sample Size
Kane, Michael T.; Mroch, Andrew A. – ETS Research Report Series, 2020
Ordinary least squares (OLS) regression and orthogonal regression (OR) address different questions and make different assumptions about errors. The OLS regression of Y on X yields predictions of a dependent variable (Y) contingent on an independent variable (X) and minimizes the sum of squared errors of prediction. It assumes that the independent…
Descriptors: Regression (Statistics), Least Squares Statistics, Test Bias, Error of Measurement
Daniel McNeish – Grantee Submission, 2023
Factor analysis is often used to model scales created to measure latent constructs, and internal structure validity evidence is commonly assessed with indices like SRMR, RMSEA, and CFI. These indices are essentially effect size measures and definitive benchmarks regarding which values connote reasonable fit have been elusive. Simulations from the…
Descriptors: Models, Testing, Indexes, Factor Analysis
Taylor, John M. – Practical Assessment, Research & Evaluation, 2019
Although frequentist estimators can effectively fit ordinal confirmatory factor analysis (CFA) models, their assumptions are difficult to establish and estimation problems may prohibit their use at times. Consequently, researchers may want to also look to Bayesian analysis to fit their ordinal models. Bayesian methods offer researchers an…
Descriptors: Bayesian Statistics, Factor Analysis, Least Squares Statistics, Error of Measurement
Christopher Martin Amissah – ProQuest LLC, 2024
Measurement of latent constructs is one of the most challenging tasks in psychological research. Unlike physical variables, latent constructs are not directly observable but are inferred through individuals' responses to a set of items often referred to as measurement instruments, tests, surveys, or assessments. For decades, exploratory factor…
Descriptors: Models, Psychological Studies, Replication (Evaluation), Factor Analysis
Dakota W. Cintron – ProQuest LLC, 2020
Observable data in empirical social and behavioral science studies are often categorical (i.e., binary, ordinal, or nominal). When categorical data are outcomes, they fail to maintain the scale and distributional properties of linear regression and factor analysis. Attempting to estimate model parameters for categorical outcome data with the…
Descriptors: Factor Analysis, Computation, Statistics, Methods
Sarsa, Sami; Leinonen, Juho; Hellas, Arto – Journal of Educational Data Mining, 2022
New knowledge tracing models are continuously being proposed, even at a pace where state-of-the-art models cannot be compared with each other at the time of publication. This leads to a situation where ranking models is hard, and the underlying reasons of the models' performance -- be it architectural choices, hyperparameter tuning, performance…
Descriptors: Learning Processes, Artificial Intelligence, Intelligent Tutoring Systems, Memory
Barbara Means; Julie Neisler – Online Learning, 2023
Learner engagement is well-established as critical for learning online. Professional development for online instructors emphasizes techniques for engaging students, and learning technology products tout features intended to promote engagement (e.g., adaptive content, video, gamification). But the influence of particular instructor practices and of…
Descriptors: Learner Engagement, Electronic Learning, Teaching Methods, Educational Practices

Peer reviewed
Direct link
