Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 5 |
| Since 2017 (last 10 years) | 9 |
| Since 2007 (last 20 years) | 21 |
Descriptor
Source
Author
Publication Type
| Reports - Research | 15 |
| Speeches/Meeting Papers | 10 |
| Journal Articles | 7 |
| Collected Works - Proceedings | 6 |
| Reports - Evaluative | 2 |
| Numerical/Quantitative Data | 1 |
Education Level
Audience
Location
| China | 2 |
| France | 2 |
| Pennsylvania | 2 |
| Afghanistan | 1 |
| Australia | 1 |
| Brazil | 1 |
| Estonia | 1 |
| Finland | 1 |
| Germany | 1 |
| Illinois (Chicago) | 1 |
| Malaysia | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| Program for International… | 1 |
What Works Clearinghouse Rating
Mao, Shun; Zhan, Jieyu; Wang, Yizhao; Jiang, Yuncheng – IEEE Transactions on Learning Technologies, 2023
For offering adaptive learning to learners in intelligent tutoring systems, one of the fundamental tasks is knowledge tracing (KT), which aims to assess learners' learning states and make prediction for future performance. However, there are two crucial issues in deep learning-based KT models. First, the knowledge concepts are used to predict…
Descriptors: Intelligent Tutoring Systems, Learning Processes, Prediction, Prior Learning
Wang, Fei; Huang, Zhenya; Liu, Qi; Chen, Enhong; Yin, Yu; Ma, Jianhui; Wang, Shijin – IEEE Transactions on Learning Technologies, 2023
To provide personalized support on educational platforms, it is crucial to model the evolution of students' knowledge states. Knowledge tracing is one of the most popular technologies for this purpose, and deep learning-based methods have achieved state-of-the-art performance. Compared to classical models, such as Bayesian knowledge tracing, which…
Descriptors: Cognitive Measurement, Diagnostic Tests, Models, Prediction
Sarsa, Sami; Leinonen, Juho; Hellas, Arto – Journal of Educational Data Mining, 2022
New knowledge tracing models are continuously being proposed, even at a pace where state-of-the-art models cannot be compared with each other at the time of publication. This leads to a situation where ranking models is hard, and the underlying reasons of the models' performance -- be it architectural choices, hyperparameter tuning, performance…
Descriptors: Learning Processes, Artificial Intelligence, Intelligent Tutoring Systems, Memory
Orr, J. Walker; Russell, Nathaniel – International Educational Data Mining Society, 2021
The assessment of program functionality can generally be accomplished with straight-forward unit tests. However, assessing the design quality of a program is a much more difficult and nuanced problem. Design quality is an important consideration since it affects the readability and maintainability of programs. Assessing design quality and giving…
Descriptors: Programming Languages, Feedback (Response), Units of Study, Computer Science Education
Danial Hooshyar; Nour El Mawas; Yeongwook Yang – Knowledge Management & E-Learning, 2024
The use of learner modelling approaches is critical for providing adaptive support in educational computer games, with predictive learner modelling being among the key approaches. While adaptive supports have been shown to improve the effectiveness of educational games, improperly customized support can have negative effects on learning outcomes.…
Descriptors: Artificial Intelligence, Course Content, Tests, Scores
The AI Teacher Test: Measuring the Pedagogical Ability of Blender and GPT-3 in Educational Dialogues
Tack, Anaïs; Piech, Chris – International Educational Data Mining Society, 2022
How can we test whether state-of-the-art generative models, such as Blender and GPT-3, are good AI teachers, capable of replying to a student in an educational dialogue? Designing an AI teacher test is challenging: although evaluation methods are much-needed, there is no off-the-shelf solution to measuring pedagogical ability. This paper reports…
Descriptors: Artificial Intelligence, Dialogs (Language), Bayesian Statistics, Decision Making
Doroudi, Shayan; Aleven, Vincent; Brunskill, Emma – Grantee Submission, 2017
The gold standard for identifying more effective pedagogical approaches is to perform an experiment. Unfortunately, frequently a hypothesized alternate way of teaching does not yield an improved effect. Given the expense and logistics of each experiment, and the enormous space of potential ways to improve teaching, it would be highly preferable if…
Descriptors: Teaching Methods, Matrices, Evaluation Methods, Models
Falakmasir, Mohammad; Yudelson, Michael; Ritter, Steve; Koedinger, Ken – International Educational Data Mining Society, 2015
Bayesian Knowledge Tracing (BKT) has been in wide use for modeling student skill acquisition in Intelligent Tutoring Systems (ITS). BKT tracks and updates student's latent mastery of a skill as a probability distribution of a binary variable. BKT does so by accounting for observed student successes in applying the skill correctly, where success is…
Descriptors: Bayesian Statistics, Models, Skill Development, Intelligent Tutoring Systems
Ostrow, Korinn; Donnelly, Chistopher; Heffernan, Neil – International Educational Data Mining Society, 2015
As adaptive tutoring systems grow increasingly popular for the completion of classwork and homework, it is crucial to assess the manner in which students are scored within these platforms. The majority of systems, including ASSISTments, return the binary correctness of a student's first attempt at solving each problem. Yet for many teachers,…
Descriptors: Intelligent Tutoring Systems, Scoring, Testing, Credits
Huang, Yun; González-Brenes, José P.; Kumar, Rohit; Brusilovsky, Peter – International Educational Data Mining Society, 2015
Latent variable models, such as the popular Knowledge Tracing method, are often used to enable adaptive tutoring systems to personalize education. However, finding optimal model parameters is usually a difficult non-convex optimization problem when considering latent variable models. Prior work has reported that latent variable models obtained…
Descriptors: Guidelines, Models, Prediction, Evaluation Methods
González-Brenes, José P.; Huang, Yun – International Educational Data Mining Society, 2015
Classification evaluation metrics are often used to evaluate adaptive tutoring systems-- programs that teach and adapt to humans. Unfortunately, it is not clear how intuitive these metrics are for practitioners with little machine learning background. Moreover, our experiments suggest that existing convention for evaluating tutoring systems may…
Descriptors: Intelligent Tutoring Systems, Evaluation Methods, Program Evaluation, Student Behavior
Doroudi, Shayan; Holstein, Kenneth; Aleven, Vincent; Brunskill, Emma – Grantee Submission, 2016
How should a wide variety of educational activities be sequenced to maximize student learning? Although some experimental studies have addressed this question, educational data mining methods may be able to evaluate a wider range of possibilities and better handle many simultaneous sequencing constraints. We introduce Sequencing Constraint…
Descriptors: Sequential Learning, Data Collection, Information Retrieval, Evaluation Methods
Anderson, John R. – Neuropsychologia, 2012
Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application…
Descriptors: Markov Processes, Intelligent Tutoring Systems, Problem Solving, Methods
Baker, Ryan S.; Hershkovitz, Arnon; Rossi, Lisa M.; Goldstein, Adam B.; Gowda, Sujith M. – Journal of the Learning Sciences, 2013
We present a new method for analyzing a student's learning over time for a specific skill: analysis of the graph of the student's moment-by-moment learning over time. Moment-by-moment learning is calculated using a data-mined model that assesses the probability that a student learned a skill or concept at a specific time during learning (Baker,…
Descriptors: Learning Processes, Intelligent Tutoring Systems, Probability, Skill Development
Aleven, Vincent; Roll, Ido; McLaren, Bruce M.; Koedinger, Kenneth R. – Educational Psychologist, 2010
Assessment of students' self-regulated learning (SRL) requires a method for evaluating whether observed actions are appropriate acts of self-regulation in theEv specific learning context in which they occur. We review research that has resulted in an automated method for context-sensitive assessment of a specific SRL strategy, help seeking while…
Descriptors: Feedback (Response), Help Seeking, Intelligent Tutoring Systems, Tutoring
Previous Page | Next Page »
Pages: 1 | 2
Peer reviewed
Direct link
